ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient nature of J195754+353513

206   0   0.0 ( 0 )
 نشر من قبل Sabyasachi Pal Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched for transient and/or variable radio sources in the field of Galactic micro-quasar Cygnus X-1 in 1.4 GHz (L band) using data from the Karl G. Jansky Very Large Array (JVLA). We used twenty years of data between 1983 and 2003. We found a source J195754+353513 showing transient behavior. The source was also mentioned earlier in NVSS and WENSS catalog but its transient nature was not reported earlier. The source is located 23.8 arcminutes far from Cygnus X-1. It is detected many times during the span of our study and it varied between less than 0.3 mJy to 201 mJy. J195754+353513 also showed high intra-day variability. In one occasion, the source rose from ~20 mJy to ~180 mJy 700 second. For limited number of cases circularly polarized emission could be detected from the source with V/I vary between 0.15 to 0.25. 2MASS J19575420+3535152 may be the near-infrared counterpart of the source. We compared the properties of the source with other Galactic transient sources having similar properties. The nature of the source is still unknown. We speculate on its possible nature.



قيم البحث

اقرأ أيضاً

Searches for optical transients are usually performed with a cadence of days to weeks, optimised for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour timescales. Here, we present the results of deep searches for dim, minute-timescale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20s exposures to systematically probe timescales down to 1.17 minutes at magnitude limits $g > 23$ (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multi-band imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multi-facility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-timescale fast optical transient rates for a range of depths and timescales. Finally, we demonstrate that optical $g$-band light curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.
113 - A.A. Lutovinov 2015
We present the results of the pulse phase- and luminosity-resolved spectroscopy of the transient X-ray pulsar V0332+53, performed for the first time in a wide luminosity range (1-40)x10^{37} erg/s during a giant outburst observed by the RXTE observat ory in Dec 2004 - Feb 2005. We characterize the spectra quantitatively and built the detailed three-dimensional picture of spectral variations with pulse phase and throughout the outburst. We show that all spectral parameters are strongly variable with the pulse phase, and the pattern of this variability significantly changes with luminosity directly reflecting the associated changes in the structure of emission regions and their beam patterns. Obtained results are qualitatively discussed in terms of the recently developed reflection model for the formation of cyclotron lines in the spectra of X-ray pulsars.
We present multi-epoch observations with the VLBA of SiO maser emission in the v=1, J=1-0 transition at 43 GHz from the remnant of the red nova V838 Mon. We model the positions of maser spots to derive a parallax of 0.166+/-0.060 mas. Combining this parallax with other distance information results in a distance of 5.6+/-0.5 kpc, which agrees with an independent geometric distance of 6.1+/-0.6 kpc from modeling polarimetry images of V838 Mons light echo. Combining these results, and including a weakly constraining Gaia DR2 parallax, yields a best estimate of distance of 5.9+/-0.4 kpc. The maser spots are located close to the peaks of continuum at ~225 GHz and SiO J=5-4 thermal emission detected with ALMA. The proper motion of V838 Mon confirms its membership in a small open cluster in the Outer spiral arm of the Milky Way.
258 - Sylvain Chaty 2011
The aim of this review is to describe the nature, formation and evolution of the three kinds of high mass X-ray binary (HMXB) population: i. systems hosting Be stars (BeHMXBs), ii. systems accreting the stellar wind of supergiant stars (sgHMXBs), and iii. supergiant stars overflowing their Roche lobe. There are now many new observations, from the high-energy side (mainly from the INTEGRAL satellite), complemented by multi-wavelength observations (mainly in the optical, near and mid-infrared from ESO facilities), showing that a new population of supergiant HMXBs has been recently revealed. New observations also suggest the existence of evolutionary links between Be and stellar wind accreting supergiant X-ray binaries. I describe here the observational facts about the different categories of HMXBs, discuss the different models of accretion in these sources (e.g. transitory accretion disc versus clumpy winds), show the evidences of a link between different kinds of HMXBs, and finally compare observations with population synthesis models.
116 - E. Kankare , R. Kotak , S. Mattila 2017
Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of ~ 2.3 x 10^52 erg. The slow evolution of its light curve and persistently narrow spectral lines over ~3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discovered that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا