ﻻ يوجد ملخص باللغة العربية
We describe new Hi-GAL based maps of the entire Galactic Plane, obtained using continuum data in the wavelength range 70-500 $mu$m. These maps are derived with the PPMAP procedure, and therefore represent a significant improvement over those obtained with standard analysis techniques. Specifically they have greatly improved resolution (12 arcsec) and, in addition to more accurate integrated column densities and mean dust temperatures, they give temperature-differential column densities, i.e., separate column density maps in twelve distinct dust temperature intervals, along with the corresponding uncertainty maps. The complete set of maps is available on-line. We briefly describe PPMAP and present some illustrative examples of the results. These include (a) multi-temperature maps of the Galactic HII region W5-E, (b) the temperature decomposition of molecular cloud column-density probability distribution functions, and (c) the global variation of mean dust temperature as a function of Galactocentric distance. Amongst our findings are: (i) a strong localised temperature gradient in W5-E in a direction orthogonal to that towards the ionising star, suggesting an alternative heating source and providing possible guidance for models of the formation of the bubble complex, and (ii) the overall radial profile of dust temperature in the Galaxy shows a monotonic decrease, broadly consistent both with models of the interstellar radiation field and with previous estimates at lower resolution. However, we also find a central temperature plateau within ~ 6 kpc of the Galactic centre, outside of which is a pronounced steepening of the radial profile. This behaviour may reflect the greater proportion of molecular (as opposed to atomic) gas in the central region of the Galaxy.
Past and recent observations have revealed unexpected variations in the FIR-mm dust emissivity. In the Herschel spectral range, those are often referred to as a 500{mu}m emission excess. Several dust emission models have been developed to interpret a
The recent data collected by {it Herschel} have confirmed that interstellar structures with filamentary shape are ubiquitously present in the Milky Way. Filaments are thought to be formed by several physical mechanisms acting from the large Galactic
Variations in the dust emissivity are critical for gas mass determinations derived from far-infrared observations, but also for separating dust foreground emission from the Cosmic Microwave Background (CMB). Hi-GAL observations allow us for the first
We present the physical and evolutionary properties of prestellar and protostellar clumps in the Herschel Infrared GALactic plane survey (Hi-GAL) in two large areas centered in the Galactic plane and covering the tips of the long Galactic bar at the
We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key-project that will map the inner Galactic Plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science high