Adopting the graph-theoretic approach to the correlation experiments, we analyze the origin of monogamy and prove that it can be recognised as a consequence of exclusivity principle(EP). We provide an operational criterion for monogamy: if the fractional packing number of the graph corresponding to the union of event sets of several physical experiments does not exceed the sum of independence numbers of each individual experiment graph, then these experiments are monogamous. As applications of this observation, several examples are provided, including the monogamy for experiments of Clauser-Horne-Shimony-Holt (CHSH) type, Klyachko-Can-Biniciou{g}lu-Shumovsky (KCBS) type, and for the first time we give some monogamy relations of Swetlichnys genuine nonlocality. We also give the necessary and sufficient condition for several experiments to be monogamous: several experiments are monogamous if and only if the Lovasz number the union exclusive graph is less than or equal to the sum of independence numbers of each exclusive graph.