ﻻ يوجد ملخص باللغة العربية
Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of simple models known to show unconventional superconducting tendencies. Using the Density Matrix Renormalization Group technique, we calculate the dynamical spin structure factor $S({bf k},omega)$ of a generalized $t-U-J$ Hubbard model away from half-filling in a two-leg ladder geometry. The addition of $J$ enhances pairing tendencies. We analyze quantitatively the signatures of pairing in the magnetic excitation spectra. We found that the superconducting pair-correlation strength, that can be estimated independently from ground state properties, is closely correlated with the integrated low-energy magnetic spectral weight in the vicinity of $(pi,pi)$. In this wave-vector region, robust spin incommensurate features develop with increasing doping. The branch of the spectrum with rung direction wave-vector $k_{rung}=0$ does not change substantially with doping where pairing dominates, and thus plays a minor role. We discuss the implications of our results for neutron scattering experiments, where the spin excitation dynamics of hole-doped quasi-one dimensional magnetic materials can be measured, and also address implications for recent resonant inelastic X-ray scattering experiments.
The multielectron LDA+GTB approach has been developed to calculate electronic structure of strongly correlated cuprates. At low energies the effective Hamiltonian of the $t - t - t - {t_ bot } - {J^ * } - {J_ bot }$-model has been derived with parame
We study the dynamics of the Cooper pairing across the T=0 phase diagram of the two-dimensional Hubbard Model, relevant for high-temperature superconductors, using a cluster extension of dynamical mean field theory. We find that the superconducting p
The pairing mechanism in A$_3$C$_{60}$ is investigated by studying the properties of a three-orbital Hubbard model with antiferromagnetic Hund coupling in the normal and superconducting phase. Local orbital fluctuations are shown to be substantially
We investigate the spin dynamics in the superconducting phase of UTe$_{2}$ by triple-axis inelastic neutron scattering on a single crystal sample. At the wave-vector $bf{k_1}$=(0, 0.57, 0), where the normal state antiferromagnetic correlations are pe
We consider the effects of Umklapp processes in doped two-leg fermionic ladders. These may emerge either at special band fillings or as a result of the presence of external periodic potentials. We show that such Umklapp processes can lead to profound