ﻻ يوجد ملخص باللغة العربية
To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalised probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other non-signalling ones.
There have been a number of attempts to derive the set of quantum non-local correlations from reasonable physical principles. Here we introduce $tilde{Q}$, a set of multipartite supra-quantum correlations that has appeared under different names in fi
Although quantum mechanics is a very successful theory, its foundations are still a subject of intense debate. One of the main problems is the fact that quantum mechanics is based on abstract mathematical axioms, rather than on physical principles. Q
Quantum discord quantifies non-classical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whol
A recently developed semiclassical approximation to exchange in one dimension is shown to be almost exact, with essentially no computational cost. The variational stability of this approximation is tested, and its far greater accuracy relative to loc
One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rat