ﻻ يوجد ملخص باللغة العربية
We analyse a nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully quantum equations of motion, we show that the system produces quadrature squeezed outputs which exhibit bipartite entanglement, EPR-steering, and asymmetric steering across a two octave frequency range.
We analyse the output quantum tripartite correlations from an intracavity nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully qua
We compare the bipartite entanglement and EPR-steering properties of the two different schemes which produce third harmonic optical fields from an input field at the fundamental frequency. The first scheme uses second harmonic cascaded with sum-frequ
The generation and manipulation of strong entanglement and Einstein-Podolsky-Rosen (EPR) steering in macroscopic systems are outstanding challenges in modern physics. Especially, the observation of asymmetric EPR steering is important for both its fu
The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it i
Quantum steering, loosely speaking the distribution of entanglement from an untrusted party, is a form of quantum nonlocality which is intermediate between entanglement and Bell nonlocality. Determining which states can be steered is important from a