Recent observations suggest that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics (MHD) simulations with the effect of self-gravity. Adaptive-mesh-refinement and sink particle techniques are used to follow long-time evolution of the shocked cloud. We find that the shock compression of turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe high accretion rate dot{M}_acc > 10^{-4} M_sun/yr that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M>50 M_sun in a few times 10^5 yr after the onset of the filament collapse.