ترغب بنشر مسار تعليمي؟ اضغط هنا

No Tau? No Astronomy!

131   0   0.0 ( 0 )
 نشر من قبل Daniele Fargion
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since 2013 IceCube cascade showers sudden overabundance have shown a fast flavor change above 30-60 TeV up to PeV energy. This flavor change from dominant muon tracks at TeVs to shower events at higher energies, has been indebted to a new injection of a neutrino astronomy. However the recent published 54 neutrino HESE, high energy starting events, as well as the 38 external muon tracks made by trough going muon formed around the IceCube, none of them are pointing to any expected X-gamma or radio sources: no one in connection to GRB, no toward active BL Lac, neither to AGN source in Fermi catalog. No clear correlation with nearby mass distribution (Local Group), nor to galactic plane. Moreover there have not been any record (among a dozen of 200 TeV energetic events) of the expected double bang due to the tau neutrino birth and decay. An amazing and surprising unfair distribution in flavor versus expected democratic one. Finally there is not a complete consistence of the internal HESE event spectra and the external crossing muon track ones. Moreover the apparent sudden astrophysical neutrino flux rise at 60 TeV might be probably also suddenly cut at a few PeV in order to hide the (unobserved , yet) Glashow resonance peak at 6.3 PeV. A more mondane prompt charmed atmospheric neutrino component may explain most of the IceCube puzzles. If this near future, 2017-2018, it does not shine tau neutrino signals somewhere (by tau airshowers in AUGER, TA, ASHRA or double bang in IceCube) there are a list of consequences to face. These missing correlations and in particular the tau signature absence force us to claim : No Tau? No neutrino Astronomy.



قيم البحث

اقرأ أيضاً

IceCube Neutrino Astronomy is considered. The tau neutrino flavor paucity and the asymmetry for the tracks suggest a dominant atmospheric charm noise. The correlated cascades and tracks asymmetry with relevant statistics enforce the charm noise domin ance in the data. The charm signal may explain at once the absence of correlation for the tracks data with the galactic plane and with known brightest gamma sources.
We consider the current observed ensemble of pulsing ultraluminous X-ray sources (PULXs). We show that all of their observed properties (luminosity, spin period, and spinup rate) are consistent with emission from magnetic neutron stars with fields in the usual range $10^{11} - 10^{13}, {rm G}$, which is collimated (`beamed) by the outflow from an accretion disc supplied with mass at a super-Eddington rate, but ejecting the excess, in the way familiar for other (non-pulsing) ULXs. The observed properties are inconsistent with magnetar-strength fields in all cases. We point out that all proposed pictures of magnetar formation suggest that they are unlikely to be members of binary systems, in agreement with the observation that all confirmed magnetars are single. The presence of magnetars in ULXs is therefore improbable, in line with our conclusions above.
Some OB stars show variable non-thermal radio emission. The non-thermal emission is due to synchrotron radiation that is emitted by electrons accelerated to high energies. The electron acceleration occurs at strong shocks created by the collision of radiatively-driven stellar winds in binary systems. Here we present results of our modelling of two colliding wind systems: Cyg OB2 No. 8A and Cyg OB2 No. 9.
We examine the dark matter content of satellite galaxies in Lambda-CDM cosmological hydrodynamical simulations of the Local Group from the APOSTLE project. We find excellent agreement between simulation results and estimates for the 9 brightest Galac tic dwarf spheroidals (dSphs) derived from their stellar velocity dispersions and half-light radii. Tidal stripping plays an important role by gradually removing dark matter from the outside in, affecting in particular fainter satellites and systems of larger-than-average size for their luminosity. Our models suggest that tides have significantly reduced the dark matter content of Can Ven I, Sextans, Carina, and Fornax, a prediction that may be tested by comparing them with field galaxies of matching luminosity and size. Uncertainties in observational estimates of the dark matter content of individual dwarfs have been underestimated in the past, at times substantially. We use our improved estimates to revisit the `too-big-to-fail problem highlighted in earlier N-body work. We reinforce and extend our previous conclusion that the APOSTLE simulations show no sign of this problem. The resolution does not require `cores in the dark mass profiles, but, rather, relies on revising assumptions and uncertainties in the interpretation of observational data and accounting for `baryon effects in the theoretical modelling.
260 - Arne Hansen , Stefan Wolf 2019
Can normal science-in the Kuhnian sense-add something substantial to the discussion about the measurement problem? Does an extended Wigners-friend Gedankenexperiment illustrate new issues? Or a new quality of known issues? Are we led to new interpret ations, new perspectives, or do we iterate the previously known? The recent debate does, as we argue, neither constitute a turning point in the discussion about the measurement problem nor fundamentally challenge the legitimacy of quantum mechanics. Instead, the measurement problem asks for a reflection on fundamental paradigms of doing physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا