ﻻ يوجد ملخص باللغة العربية
Prompt fission $gamma$-rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modelling nuclear reactors. In this work we present prompt $gamma$-ray emission characteristics in fission, for the first time as a function of the nuclear excitation energy of the fissioning system. Emitted $gamma$-ray spectra were measured, and $gamma$-ray multiplicities and average and total $gamma$ energies per fission were determined for the $^{233}$U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the $^{239}$Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energy above the fission barrier, despite the fact that an extra $sim$5 MeV of energy is potentially available in the excited fragments for $gamma$-decay. The measured results are compared to model calculations made for prompt $gamma$-ray emission with the fission model code GEF. Further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.
The Oslo Method has been applied to particle-$gamma$ coincidences following the $^{239}mathrm{Pu}$(d,p) reaction to obtain the nuclear level density (NLD) and $gamma$-ray strength function ($gamma$SF) of $^{240}mathrm{Pu}$. The experiment was conduct
In this paper we present the first systematic analysis of the impact of the populated vs. intrinsic spin distribution on the nuclear level density and $gamma$-ray strength function retrieved through the Oslo Method. We illustrate the effect of the sp
The existence of a new force beyond the Standard Model is compelling because it could explain several striking astrophysical observations which fail standard interpretations. We searched for the light vector mediator of this dark force, the $mathrm{U
The average prompt-fission-neutron multiplicity $bar{ u}$ is of significance in the areas of nuclear theory, nuclear nonproliferation, and nuclear energy. In this work, the surrogate-reaction method has been used for the first time to indirectly dete
High statistics measurements of the photon asymmetry $mathrm{Sigma}$ for the $overrightarrow{gamma}$p$rightarrowpi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon b