A novel entropy recurrence quantification analysis


الملخص بالإنكليزية

The growing study of time series, especially those related to nonlinear systems, has challenged the methodologies to characterize and classify dynamical structures of a signal. Here we conceive a new diagnostic tool for time series based on the concept of information entropy, in which the probabilities are associated to microstates defined from the recurrence phase space. Recurrence properties can properly be studied using recurrence plots, a methodology based on binary matrices where trajec- tories in phase space of dynamical systems are evaluated against other embedded trajectory. Our novel entropy methodology has several advantages compared to the traditional recurrence entropy defined in the literature, namely, the correct evaluation of the chaoticity level of the signal, the weak dependence on parameters, correct evaluation of periodic time series properties and more sensitivity to noise level of time series. Furthermore, the new entropy quantifier developed in this manuscript also fixes inconsistent results of the traditional recurrence entropy concept, reproducing classical results with novel insights.

تحميل البحث