ﻻ يوجد ملخص باللغة العربية
In the last decade we have observed a mass increase of information, in particular information that is shared through smartphones. Consequently, the amount of information that is available does not allow the average user to be aware of all his options. In this context, recommender systems use a number of techniques to help a user find the desired product. Hence, nowadays recommender systems play an important role. Recommender Systems aim to identify products that best fits user preferences. These techniques are advantageous to both users and vendors, as it enables the user to rapidly find what he needs and the vendors to promote their products and sales. As the industry became aware of the gains that could be accomplished by using these algorithms, also a very interesting problem for many researchers, recommender systems became a very active area since the mid 90s. Having in mind that this is an ongoing problem the present thesis intends to observe the value of using a recommender algorithm to find users likes by observing her domain preferences. In a balanced probabilistic method, this thesis will show how news topics can be used to recommend news articles. In this thesis, we used different machine learning methods to determine the user ratings for an article. To tackle this problem, supervised learning methods such as linear regression, Naive Bayes and logistic regression are used. All the aforementioned models have a different nature which has an impact on the solution of the given problem. Furthermore, number of experiments are presented and discussed to identify the feature set that fits best to the problem.
The feedback data of recommender systems are often subject to what was exposed to the users; however, most learning and evaluation methods do not account for the underlying exposure mechanism. We first show in theory that applying supervised learning
This paper advocates privacy preserving requirements on collection of user data for recommender systems. The purpose of our study is twofold. First, we ask if restrictions on data collection will hurt test quality of RNN-based recommendations. We stu
Ubiquitous personalized recommender systems are built to achieve two seemingly conflicting goals, to serve high quality content tailored to individual users taste and to adapt quickly to the ever changing environment. The former requires a complex ma
Realistic recommender systems are often required to adapt to ever-changing data and tasks or to explore different models systematically. To address the need, we present AutoRec, an open-source automated machine learning (AutoML) platform extended fro
Classical recommender system methods typically face the filter bubble problem when users only receive recommendations of their familiar items, making them bored and dissatisfied. To address the filter bubble problem, unexpected recommendations have b