ترغب بنشر مسار تعليمي؟ اضغط هنا

Recommender System for News Articles using Supervised Learning

75   0   0.0 ( 0 )
 نشر من قبل Ana Freire
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last decade we have observed a mass increase of information, in particular information that is shared through smartphones. Consequently, the amount of information that is available does not allow the average user to be aware of all his options. In this context, recommender systems use a number of techniques to help a user find the desired product. Hence, nowadays recommender systems play an important role. Recommender Systems aim to identify products that best fits user preferences. These techniques are advantageous to both users and vendors, as it enables the user to rapidly find what he needs and the vendors to promote their products and sales. As the industry became aware of the gains that could be accomplished by using these algorithms, also a very interesting problem for many researchers, recommender systems became a very active area since the mid 90s. Having in mind that this is an ongoing problem the present thesis intends to observe the value of using a recommender algorithm to find users likes by observing her domain preferences. In a balanced probabilistic method, this thesis will show how news topics can be used to recommend news articles. In this thesis, we used different machine learning methods to determine the user ratings for an article. To tackle this problem, supervised learning methods such as linear regression, Naive Bayes and logistic regression are used. All the aforementioned models have a different nature which has an impact on the solution of the given problem. Furthermore, number of experiments are presented and discussed to identify the feature set that fits best to the problem.



قيم البحث

اقرأ أيضاً

The feedback data of recommender systems are often subject to what was exposed to the users; however, most learning and evaluation methods do not account for the underlying exposure mechanism. We first show in theory that applying supervised learning to detect user preferences may end up with inconsistent results in the absence of exposure information. The counterfactual propensity-weighting approach from causal inference can account for the exposure mechanism; nevertheless, the partial-observation nature of the feedback data can cause identifiability issues. We propose a principled solution by introducing a minimax empirical risk formulation. We show that the relaxation of the dual problem can be converted to an adversarial game between two recommendation models, where the opponent of the candidate model characterizes the underlying exposure mechanism. We provide learning bounds and conduct extensive simulation studies to illustrate and justify the proposed approach over a broad range of recommendation settings, which shed insights on the various benefits of the proposed approach.
This paper advocates privacy preserving requirements on collection of user data for recommender systems. The purpose of our study is twofold. First, we ask if restrictions on data collection will hurt test quality of RNN-based recommendations. We stu dy how validation performance depends on the available amount of training data. We use a combination of top-K accuracy, catalog coverage and novelty for this purpose, since good recommendations for the user is not necessarily captured by a traditional accuracy metric. Second, we ask if we can improve the quality under minimal data by using secondary data sources. We propose knowledge transfer for this purpose and construct a representation to measure similarities between purchase behaviour in data. This to make qualified judgements of which source domain will contribute the most. Our results show that (i) there is a saturation in test performance when training size is increased above a critical point. We also discuss the interplay between different performance metrics, and properties of data. Moreover, we demonstrate that (ii) our representation is meaningful for measuring purchase behaviour. In particular, results show that we can leverage secondary data to improve validation performance if we select a relevant source domain according to our similarly measure.
Ubiquitous personalized recommender systems are built to achieve two seemingly conflicting goals, to serve high quality content tailored to individual users taste and to adapt quickly to the ever changing environment. The former requires a complex ma chine learning model that is trained on a large amount of data; the latter requires frequent update to the model. We present an incremental learning solution to provide both the training efficiency and the model quality. Our solution is based on sequential Bayesian update and quadratic approximation. Our focus is on large-scale personalized logistic regression models, with extensions to deep learning models. This paper fills in the gap between the theory and the practice by addressing a few implementation challenges that arise when applying incremental learning to large personalized recommender systems. Detailed offline and online experiments demonstrated our approach can significantly shorten the training time while maintaining the model accuracy. The solution is deployed in LinkedIn and directly applicable to industrial scale recommender systems.
Realistic recommender systems are often required to adapt to ever-changing data and tasks or to explore different models systematically. To address the need, we present AutoRec, an open-source automated machine learning (AutoML) platform extended fro m the TensorFlow ecosystem and, to our knowledge, the first framework to leverage AutoML for model search and hyperparameter tuning in deep recommendation models. AutoRec also supports a highly flexible pipeline that accommodates both sparse and dense inputs, rating prediction and click-through rate (CTR) prediction tasks, and an array of recommendation models. Lastly, AutoRec provides a simple, user-friendly API. Experiments conducted on the benchmark datasets reveal AutoRec is reliable and can identify models which resemble the best model without prior knowledge.
Classical recommender system methods typically face the filter bubble problem when users only receive recommendations of their familiar items, making them bored and dissatisfied. To address the filter bubble problem, unexpected recommendations have b een proposed to recommend items significantly deviating from users prior expectations and thus surprising them by presenting fresh and previously unexplored items to the users. In this paper, we describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process by providing multi-cluster modeling of user interests in the latent space and personalized unexpectedness via the self-attention mechanism and via selection of an appropriate unexpected activation function. Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches in terms of both accuracy and unexpectedness measures. In addition, we conduct an online A/B test at a major video platform Alibaba-Youku, where our model achieves over 3% increase in the average video view per user metric. The proposed model is in the process of being deployed by the company.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا