ﻻ يوجد ملخص باللغة العربية
The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%-70%, a temporal delay of 0-70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.
We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZP. Analyzing highly resolved spectral and polari
The Sun is an active source of radio emission which is often associated with the acceleration of electrons arising from processes such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous solar S bursts (wh
Latest study reports that plasma emission can be generated by energetic electrons of DGH distribution via the electron cyclotron maser instability (ECMI) in plasmas characterized by a large ratio of plasma oscillation frequency to electron gyro-frequ
The results of the first observations of Type IV bursts at frequencies 10-30 MHz are presented. These observations were carried out at radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) during the period 2003-2006. Detection of T
Solar activity, in particular coronal mass ejections (CMEs), are often accompanied by bursts of radiation at metre wavelengths. Some of these bursts have a long duration and extend over a wide frequency band, namely, type IV radio bursts. However, th