ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-time Lyapunov exponents in chaotic Bose-Hubbard chains

148   0   0.0 ( 0 )
 نشر من قبل Ryan Kidd Mr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many-site Bose-Hubbard lattices display complex semiclassical dynamics, with both chaotic and regular features. We have characterised chaos in the semiclassical dynamics of short Bose-Hubbard chains using both stroboscopic phase space projections and finite-time Lyapunov exponents. We found that chaos was present for intermediate collisional nonlinearity in the open trimer and quatramer systems, with soft chaos and Kolmogoroff-Arnold-Moser islands evident. We have found that the finite-time Lyapunov exponents are consistent with stroboscopic maps for the prediction of chaos in these small systems. This gives us confidence that the finite-time Lyapunov exponents will be a useful tool for the characterisation of chaos in larger systems, where meaningful phase-space projections are not possible and the dimensionality of the problem can make the standard methods intractable.



قيم البحث

اقرأ أيضاً

The scaling behavior of the maximal Lyapunov exponent in chaotic systems with time-delayed feedback is investigated. For large delay times it has been shown that the delay-dependence of the exponent allows a distinction between strong and weak chaos, which are the analogy to strong and weak instability of periodic orbits in a delay system. We find significant differences between scaling of exponents in periodic or chaotic systems. We show that chaotic scaling is related to fluctuations in the linearized equations of motion. A linear delay system including multiplicative noise shows the same properties as the deterministic chaotic systems.
Lagrangian techniques, such as the finite-time Lyapunov exponent (FTLE) and hyperbolic Lagrangian coherent structures (LCS), have become popular tools for analyzing unsteady fluid flows. These techniques identify regions where particles transported b y a flow will converge to and diverge from over a finite-time interval, even in a divergence-free flow. Lagrangian analyses, however, are time consuming and computationally expensive, hence unsuitable for quickly assessing short-term material transport. A recently developed method called OECSs [Serra, M. and Haller, G., `Objective Eulerian Coherent Structures, Chaos 26(5), 2016] rigorously connected Eulerian quantities to short-term Lagrangian transport. This Eulerian method is faster and less expensive to compute than its Lagrangian counterparts, and needs only a single snapshot of a velocity field. Along the same line, here we define the instantaneous Lyapunov Exponent (iLE), the instantaneous counterpart of the FTLE, and connect the Taylor series expansion of the right Cauchy-Green deformation tensor to the infinitesimal integration time limit of the FTLE. We illustrate our results on geophysical fluid flows from numerical models as well as analytical flows, and demonstrate the efficacy of attracting and repelling instantaneous Lyapunov exponent structures in predicting short-term material transport.
This work is devoted to further consideration of the Henon map with negative values of the shrinking parameter and the study of transient oscillations, multistability, and possible existence of hidden attractors. The computation of the finite-time Ly apunov exponents by different algorithms is discussed. A new adaptive algorithm for the finite-time Lyapunov dimension computation in studying the dynamics of dimension is used. Analytical estimates of the Lyapunov dimension using the localization of attractors are given. A proof of the conjecture on the Lyapunov dimension of self-excited attractors and derivation of the exact Lyapunov dimension formula are revisited.
There are two main strategies for improving the projection-based reduced order model (ROM) accuracy: (i) improving the ROM, i.e., adding new terms to the standard ROM; and (ii) improving the ROM basis, i.e., constructing ROM bases that yield more acc urate ROMs. In this paper, we use the latter. We propose new Lagrangian inner products that we use together with Eulerian and Lagrangian data to construct new Lagrangian ROMs. We show that the new Lagrangian ROMs are orders of magnitude more accurate than the standard Eulerian ROMs, i.e., ROMs that use standard Eulerian inner product and data to construct the ROM basis. Specifically, for the quasi-geostrophic equations, we show that the new Lagrangian ROMs are more accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields (e.g., the finite time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction). We emphasize that the new Lagrangian ROMs do not employ any closure modeling to model the effect of discarded modes (which is standard procedure for low-dimensional ROMs of complex nonlinear systems). Thus, the dramatic increase in the new Lagrangian ROMs accuracy is entirely due to the novel Lagrangian inner products used to build the Lagrangian ROM basis.
The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable directions by translating the problem to the language of scale-invariant growing surfaces. We find that the so-called characteristic LVs exhibit spatial localization, strong clustering around given spatiotemporal loci, and remarkable dynamic scaling properties of the corresponding surfaces. In contrast, the commonly used backward LVs (obtained through Gram-Schmidt orthogonalization) spread all over the system and do not exhibit dynamic scaling due to artifacts in the dynamical correlations by construction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا