Curvature-based Methods for Brain Network Analysis


الملخص بالإنكليزية

The human brain forms functional networks on all spatial scales. Modern fMRI scanners allow to resolve functional brain data in high resolutions, allowing to study large-scale networks that relate to cognitive processes. The analysis of such networks forms a cornerstone of experimental neuroscience. Due to the immense size and complexity of the underlying data sets, efficient evaluation and visualization remain a challenge for data analysis. In this study, we combine recent advances in experimental neuroscience and applied mathematics to perform a mathematical characterization of complex networks constructed from fMRI data. We use task-related edge densities [Lohmann et al., 2016] for constructing networks of task-related changes in synchronization. This construction captures the dynamic formation of patterns of neuronal activity and therefore represents efficiently the connectivity structure between brain regions. Using geometric methods that utilize Forman-Ricci curvature as an edge-based network characteristic [Weber et al., 2017], we perform a mathematical analysis of the resulting complex networks. We motivate the use of edge-based characteristics to evaluate the network structure with geometric methods. The geometric features could aid in understanding the connectivity and interplay of brain regions in cognitive processes.

تحميل البحث