ﻻ يوجد ملخص باللغة العربية
The mass-imbalanced three-body recombination process that forms a shallow dimer is shown to possess a rich Efimov-Stuckelberg landscape, with corresponding spectra that differ fundamentally from the homonuclear case. A semi-analytical treatment of the three-body recombination predicts an unusual spectra with intertwined resonance peaks and minima, and yields in-depth insight into the behavior of the corresponding Efimov spectra. In particular, the patterns of the Efimov-Stuckelberg landscape are shown to depend inherently on the degree of diabaticity of the three-body collisions, which strongly affects the universality of the heteronuclear Efimov states.
We report on the observation of triatomic Efimov resonances in an ultracold gas of cesium atoms. Exploiting the wide tunability of interactions resulting from three broad Feshbach resonances in the same spin channel, we measure magnetic-field depende
Under certain circumstances, three or more interacting particles may form bound states. While the general few-body problem is not analytically solvable, the so-called Efimov trimers appear for a system of three particles with resonant two-body intera
We have studied the three-body recombination rates on both sides of the interspecies d-wave Feshbach resonance in the $^{85}$Rb,-$^{87}$Rb-$^{87}$Rb system using the $R$-matrix propagation method in the hyperspherical coordinate frame. Two different
In this paper we discuss the recent discovery of the universality of the three-body parameter (3BP) from Efimov physics. This new result was identified by recent experimental observations in ultracold quantum gases where the value of the s-wave scatt
We perform precise studies of two- and three-body interactions near an intermediate-strength Feshbach resonance in $^{39}mathrm{K}$ at $33.5820(14)thinspace$G. Precise measurement of dimer binding energies, spanning three orders of magnitude, enables