Dissipative particle dynamics: systematic parametrization using water-octanol partition coefficients


الملخص بالإنكليزية

We present a systematic, top-down, thermodynamic parametrization scheme for dissipative particle dynamics (DPD) using water-octanol partition coefficients, supplemented by water-octanol phase equilibria and pure liquid phase density data. We demonstrate the feasibility of computing the required partition coefficients in DPD using brute-force simulation, within an adaptive semi-automatic staged optimization scheme. We test the methodology by fitting to experimental partition coefficient data for twenty one small molecules in five classes comprising alcohols and poly-alcohols, amines, ethers and simple aromatics, and alkanes (i.e. hexane). Finally, we illustrate the transferability of a subset of the determined parameters by calculating the critical micelle concentrations of selected alkyl ethoxylate surfactants, in good agreement with reported experimental values.

تحميل البحث