ﻻ يوجد ملخص باللغة العربية
Automated metrics such as BLEU are widely used in the machine translation literature. They have also been used recently in the dialogue community for evaluating dialogue response generation. However, previous work in dialogue response generation has shown that these metrics do not correlate strongly with human judgment in the non task-oriented dialogue setting. Task-oriented dialogue responses are expressed on narrower domains and exhibit lower diversity. It is thus reasonable to think that these automated metrics would correlate well with human judgment in the task-oriented setting where the generation task consists of translating dialogue acts into a sentence. We conduct an empirical study to confirm whether this is the case. Our findings indicate that these automated metrics have stronger correlation with human judgments in the task-oriented setting compared to what has been observed in the non task-oriented setting. We also observe that these metrics correlate even better for datasets which provide multiple ground truth reference sentences. In addition, we show that some of the currently available corpora for task-oriented language generation can be solved with simple models and advocate for more challenging datasets.
In this paper, we propose to formulate the task-oriented dialogue system as the purely natural language generation task, so as to fully leverage the large-scale pre-trained models like GPT-2 and simplify complicated delexicalization prepossessing. Ho
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical mo
This paper presents an automatic method to evaluate the naturalness of natural language generation in dialogue systems. While this task was previously rendered through expensive and time-consuming human labor, we present this novel task of automatic
Scarcity of training data for task-oriented dialogue systems is a well known problem that is usually tackled with costly and time-consuming manual data annotation. An alternative solution is to rely on automatic text generation which, although less a
Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (N