ﻻ يوجد ملخص باللغة العربية
The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has produced a large volume of high-quality lunar laser ranging (LLR) data since it began operating in 2006. For most of this period, APOLLO has relied on a GPS-disciplined, high-stability quartz oscillator as its frequency and time standard. The recent addition of a cesium clock as part of a timing calibration system initiated a comparison campaign between the two clocks. This has allowed correction of APOLLO range measurements--called normal points--during the overlap period, but also revealed a mechanism to correct for systematic range offsets due to clock errors in historical APOLLO data. Drift of the GPS clock on ~1000 s timescales contributed typically 2.5 mm of range error to APOLLO measurements, and we find that this may be reduced to ~1.6 mm on average. We present here a characterization of APOLLO clock errors, the method by which we correct historical data, and the resulting statistics.
The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) began millimeter-precision ranging to the Moon in 2006. Until now, a comprehensive validation of APOLLO system range accuracy has not been possible because of centimeter-scale defici
The Earth-Moon-Sun system has traditionally provided the best laboratory for testing the strong equivalence principle. For a decade, the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has been producing the worlds best lunar laser ra
Lunar laser ranging provides a number of leading experimental tests of gravitation -- important in our quest to unify General Relativity and the Standard Model of physics. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has for ye
A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millime
The residuals of the power spectra of WMAP and Plancks cosmic microwave background (CMB) anisotropies data are known to exhibit a few interesting anomalies at different scales with marginal statistical significance. Combining bottom-up and top-down m