ترغب بنشر مسار تعليمي؟ اضغط هنا

APOLLO clock performance and normal point corrections

62   0   0.0 ( 0 )
 نشر من قبل James Battat
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has produced a large volume of high-quality lunar laser ranging (LLR) data since it began operating in 2006. For most of this period, APOLLO has relied on a GPS-disciplined, high-stability quartz oscillator as its frequency and time standard. The recent addition of a cesium clock as part of a timing calibration system initiated a comparison campaign between the two clocks. This has allowed correction of APOLLO range measurements--called normal points--during the overlap period, but also revealed a mechanism to correct for systematic range offsets due to clock errors in historical APOLLO data. Drift of the GPS clock on ~1000 s timescales contributed typically 2.5 mm of range error to APOLLO measurements, and we find that this may be reduced to ~1.6 mm on average. We present here a characterization of APOLLO clock errors, the method by which we correct historical data, and the resulting statistics.



قيم البحث

اقرأ أيضاً

The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) began millimeter-precision ranging to the Moon in 2006. Until now, a comprehensive validation of APOLLO system range accuracy has not been possible because of centimeter-scale defici encies in computational models of the Earth-Moon range, and because APOLLO lacked an internal timing calibration system. Here, we report on the development of a system that enables in-situ calibration of the timing response of the APOLLO apparatus, simultaneous with lunar range measurements. The system was installed in August 2016. Preliminary results show that the APOLLO system can provide lunar range measurements with millimeter accuracy.
The Earth-Moon-Sun system has traditionally provided the best laboratory for testing the strong equivalence principle. For a decade, the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has been producing the worlds best lunar laser ra nging data. At present, a single observing session of about an hour yields a distance measurement with uncertainty of about 2~mm, an order of magnitude advance over the best pre-APOLLO lunar laser ranging data. However, these superb data have not yet yielded scientific results commensurate with their accuracy, number, and temporal distribution. There are two reasons for this. First, even in the relatively clean environment of the Earth-Moon system, a large number of effects modify the measured distance importantly and thus need to be included in the analysis model. The second reason is more complicated. The traditional problem with the analysis of solar-system metric data is that the physical model must be truncated to avoid extra parameters that would increase the condition number of the estimator. Even in a typical APOLLO analysis that does not include parameters of gravity physics, the condition number is very high: $8 times 10^{10}$.
Lunar laser ranging provides a number of leading experimental tests of gravitation -- important in our quest to unify General Relativity and the Standard Model of physics. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has for ye ars achieved median range precision at the ~2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in-situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a truth input against which APOLLOs timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the ~3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.
A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millime ter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.
The residuals of the power spectra of WMAP and Plancks cosmic microwave background (CMB) anisotropies data are known to exhibit a few interesting anomalies at different scales with marginal statistical significance. Combining bottom-up and top-down m odel-building approaches and using a pipeline that efficiently compares model predictions with data, we construct a model of primordial standard clock that is able to link and address the anomalies at both the large and small scales. This model, and its variant, provide some of the best fits to the feature anomalies in CMB. According to Bayes evidences, these models are currently statistically indistinguishable from the Standard Model. We show that the difference between them will soon become statistically significant with various higher quality data on the CMB polarization. We demonstrate that such a model-building and data-analyses process may be used to uncover a portion of detailed evolutionary history of our universe during its primordial epoch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا