ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase matched nonlinear optics via patterning layered materials

81   0   0.0 ( 0 )
 نشر من قبل Taylor Fryett
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ease of integration coupled with large second-order nonlinear coefficient of atomically thin layered 2D materials presents a unique opportunity to realize second-order nonlinearity in silicon compatible integrated photonic system. However, the phase matching requirement for second-order nonlinear optical processes makes the nanophotonic design difficult. We show that by nano-patterning the 2D material, quasi-phase matching can be achieved. Such patterning based phase-matching could potentially compensate for inevitable fabrication errors and significantly simplify the design process of the nonlinear nano-photonic devices.



قيم البحث

اقرأ أيضاً

Unprecedented material compatibility and ease of integration, in addition to the unique and diverse optoelectronic properties of layered materials have generated significant interest in their utilization in nanophotonic devices. While initial nanopho tonic experiments primarily focused on light-sources, modulators, and detectors, recently researchers have demonstrated nonlinear optical devices using layered materials. In this paper, we review the current state of cavity-enhanced nonlinear optics with layered materials. Along with conventional nonlinear optics related to harmonic generation, we report on emerging directions of nonlinear optics, where the layered materials can potentially play a significant role.
We demonstrate a wide range of novel functions in integrated, CMOS compatible, devices. This platform has promise for telecommunications and on-chip WDM optical interconnects for computing.
Particles or waves scattered from a rotating black hole can be amplified through the process of Penrose superradiance, though this cannot currently be observed in an astrophysical setting. However, analogue gravity studies can create generic rotating geometries exhibiting an ergoregion, and this led to the first observation of Penrose superradiance as the over-reflection of water waves from a rotating fluid vortex. Here we theoretically demonstrate that Penrose superradiance arises naturally in the field of nonlinear optics. In particular, we elucidate the mechanism by which a signal beam can experience gain or amplification as it glances off a strong vortex pump beam in a nonlinear defocusing medium. This involves the trapping of negative norm modes in the core of the pump vortex, as predicted by Penrose, which in turn provides a gain mechanism for the signal beam. Our results elucidate a new regime of nonlinear optics involving the notion of an ergoregion, and provide further insight into the processes involved in Penrose superradiance.
99 - Zhipei Sun , Amos Martinez , 2016
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are bec oming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Laser-driven high-order harmonic generation (HHG) provides tabletop sources of broadband extreme-ultraviolet (XUV) light with excellent spatial and temporal coherence. These sources are typically operated at low repetition rates, $f_{rep}lesssim$100 kHz, where phase-matched frequency conversion into the XUV is readily achieved. However, there are many applications that demand the improved counting statistics or frequency-comb precision afforded by operation at high repetition rates, $f_{rep}$ > 10 MHz. Unfortunately, at such high $f_{rep}$, phase matching is prevented by the accumulated steady-state plasma in the generation volume, setting stringent limitations on the XUV average power. Here, we use gas mixtures at high temperatures as the generation medium to increase the translational velocity of the gas, thereby reducing the steady-state plasma in the laser focus. This allows phase-matched XUV emission inside a femtosecond enhancement cavity at a repetition rate of 77 MHz, enabling a record generated power of $sim$2 mW in a single harmonic order. This power scaling opens up many demanding applications, including XUV frequency-comb spectroscopy of few-electron atoms and ions for precision tests of fundamental physical laws and constants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا