ﻻ يوجد ملخص باللغة العربية
Calculation of the Shannon information entropy (S) and its connection with the order-disorder transition, and with inter-particle interaction provide a challenging research area in the field of quantum information. Experimental progress with cold trapped atoms has corroborated this interest. In the present work, S is calculated for the Bose-Einstein condensate (BEC) with dominant dipolar interaction for different dipole strengths, trap aspect ratio and number of particles (N). Trapped dipolar bosons in an anisotropic trap provide an example of system where the effective interaction is strongly determined by the trap geometry. The main conlcusion of the present calculation is that the anisotropic trap reduces the number of degrees of freedom, resulting in more ordered configurations. The Landsbergs order parameter exhibits quick saturation with the increase in scattering length in both prolate and oblate traps. We also define the threshold scattering length which makes the system completely disordered. Unlike non-dipolar BEC in a spherical trap, we do not find a universal linear relation between S and ln N, and we, therefore, introduce a general quintic polynomial fit rather well working for a wide range of particle number.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topologica
Vortices are expected to exist in a supersolid but experimentally their detection can be difficult because the vortex cores are localized at positions where the local density is very low. We address here this problem by performing numerical simulatio
Dipolar Bose-Einstein condensates represent a powerful platform for the exploration of quantum many-body phenomena arising from long-range interactions. A series of recent experiments has demonstrated the formation of supersolid states of matter. Sub
We perform a full three-dimensional study on miscible-immiscible conditions for coupled dipolar and non-dipolar Bose-Einstein condensates (BEC), confined within anisotropic traps. Without loosing general miscibility aspects that can occur for two-com
We explore spatial symmetry breaking of a dipolar Bose Einstein condensate in the thermodynamic limit and reveal a critical point in the phase diagram at which crystallization occurs via a second order phase transition. This behavior is traced back t