ترغب بنشر مسار تعليمي؟ اضغط هنا

Intertwining, Excursion Theory and Krein Theory of Strings for Non-self-adjoint Markov Semigroups

232   0   0.0 ( 0 )
 نشر من قبل Mladen Savov
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we start by showing that the intertwining relationship between two minimal Markov semigroups acting on Hilbert spaces implies that any recurrent extensions, in the sense of It^o, of these semigroups satisfy the same intertwining identity. Under mild additional assumptions on the intertwining operator, we prove that the converse also holds. This connection, which relies on the representation of excursion quantities as developed by Fitzsimmons and Getoor, enables us to give an interesting probabilistic interpretation of intertwining relationships between Markov semigroups via excursion theory: two such recurrent extensions that intertwine share, under an appropriate normalization, the same local time at the boundary point. Moreover, in the case when one of the (non-self-adjoint) semigroup intertwines with the one of a quasi-diffusion, we obtain an extension of Kreins theory of strings byshowing that its densely defined spectral measure is absolutely continuous with respect to the measure appearing in the Stieltjes representation of the Laplace exponent of the inverse local time. Finally, we illustrate our results with the class of positive self-similar Markov semigroups and also the reflected generalized Laguerre semigroups. For the latter, we obtain their spectral decomposition and provide, under some conditions, a perturbed spectral gap estimate for its convergence to equilibrium.



قيم البحث

اقرأ أيضاً

For a positive self-similar Markov process, X, we construct a local time for the random set, $Theta$, of times where the process reaches its past supremum. Using this local time we describe an exit system for the excursions of X out of its past supre mum. Next, we define and study the ladder process (R,H) associated to a positive self-similar Markov process X, namely a bivariate Markov process with a scaling property whose coordinates are the right inverse of the local time of the random set $Theta$ and the process X sampled on the local time scale. The process (R,H) is described in terms of a ladder process linked to the L{e}vy process associated to X via Lampertis transformation. In the case where X never hits 0, and the upward ladder height process is not arithmetic and has finite mean, we prove the finite-dimensional convergence of (R,H) as the starting point of X tends to 0. Finally, we use these results to provide an alternative proof to the weak convergence of X as the starting point tends to 0. Our approach allows us to address two issues that remained open in Caballero and Chaumont [Ann. Probab. 34 (2006) 1012-1034], namely, how to remove a redundant hypothesis and how to provide a formula for the entrance law of X in the case where the underlying L{e}vy process oscillates.
We investigate the instability index of the spectral problem $$ -c^2y + b^2y + V(x)y = -mathrm{i} z y $$ on the line $mathbb{R}$, where $Vin L^1_{rm loc}(mathbb{R})$ is real valued and $b,c>0$ are constants. This problem arises in the study of stab ility of solitons for certain nonlinear equations (e.g., the short pulse equation and the generalized Bullough-Dodd equation). We show how to apply the standard approach in the situation under consideration and as a result we provide a formula for the instability index in terms of certain spectral characteristics of the 1-D Schrodinger operator $H_V=-c^2frac{d^2}{dx^2}+b^2 +V(x)$.
We analyze random walks on a class of semigroups called ``left-regular bands. These walks include the hyperplane chamber walks of Bidigare, Hanlon, and Rockmore. Using methods of ring theory, we show that the transition matrices are diagonalizable an d we calculate the eigenvalues and multiplicities. The methods lead to explicit formulas for the projections onto the eigenspaces. As examples of these semigroup walks, we construct a random walk on the maximal chains of any distributive lattice, as well as two random walks associated with any matroid. The examples include a q-analogue of the Tsetlin library. The multiplicities of the eigenvalues in the matroid walks are ``generalized derangement numbers, which may be of independent interest.
64 - Hendrik Vogt 2016
We investigate selfadjoint $C_0$-semigroups on Euclidean domains satisfying Gaussian upper bounds. Major examples are semigroups generated by second order uniformly elliptic operators with Kato potentials and magnetic fields. We study the long time b ehaviour of the $L_infty$ operator norm of the semigroup. As an application we prove a new $L_infty$-bound for the torsion function of a Euclidean domain that is close to optimal.
We investigate the dissipativity properties of a class of scalar second order parabolic partial differential equations with time-dependent coefficients. We provide explicit condition on the drift term which ensure that the relative entropy of one par ticular orbit with respect to some other one decreases to zero. The decay rate is obtained explicitly by the use of a Sobolev logarithmic inequality for the associated semigroup, which is derived by an adaptation of Bakrys $Gamma-$ calculus. As a byproduct, the systematic method for constructing entropies which we propose here also yields the well-known intermediate asymptotics for the heat equation in a very quick way, and without having to rescale the original equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا