ﻻ يوجد ملخص باللغة العربية
Stars with convective envelopes display magnetic activity, which decreases over time due to the magnetic braking of the star. This age-dependence of magnetic activity is well-studied for younger stars, but the nature of this dependence for older stars is not well understood. This is mainly because absolute stellar ages for older stars are hard to measure. However, relatively accurate stellar ages have recently come into reach through asteroseismology. In this work we present X-ray luminosities, which are a measure for magnetic activity displayed by the stellar coronae, for 24 stars with well-determined ages older than a gigayear. We find 14 stars with detectable X-ray luminosities and use these to calibrate the age-activity relationship. We find a relationship between stellar X-ray luminosity, normalized by stellar surface area, and age that is steeper than the relationships found for younger stars, with an exponent of $-2.80 pm 0.72$. Previous studies have found values for the exponent of the age-activity relationship ranging between -1.09 to -1.40, dependent on spectral type, for younger stars. Given that there are recent reports of a flattening relationship between age and rotational period for old cool stars, one possible explanation is that we witness a strong steepening of the relationship between activity and rotation.
We investigate photometric variations due to stellar activity which induce systematic radial-velocity errors (so-called jitter) for the four targets in the Hyades open cluster observed by the K2 mission (EPIC 210721261, EPIC 210923016, EPIC 247122957
Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle Nebula that have prominent near-infrared (NIR) excess and optical colours typical of pre-main sequence (PMS) stars older than 8 Myr. At least half of those for which
Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be v
We present a summary of the splinter session Sun-like stars unlike the Sun that was held on 09 June 2016 as part of the Cool Stars 19 conference (Uppsala, Sweden). We discussed the main limitations (in the theory and observations) in the derivation o
The large majority of stars in the Milky Way are late-type dwarfs, and the frequency of low-mass exoplanets in orbits around these late-type dwarfs appears to be high. In order to characterize the radiation environments and habitable zones of the coo