ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Age-Activity Relationship for Cool Stars older than a Gigayear

93   0   0.0 ( 0 )
 نشر من قبل Rachel Booth
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stars with convective envelopes display magnetic activity, which decreases over time due to the magnetic braking of the star. This age-dependence of magnetic activity is well-studied for younger stars, but the nature of this dependence for older stars is not well understood. This is mainly because absolute stellar ages for older stars are hard to measure. However, relatively accurate stellar ages have recently come into reach through asteroseismology. In this work we present X-ray luminosities, which are a measure for magnetic activity displayed by the stellar coronae, for 24 stars with well-determined ages older than a gigayear. We find 14 stars with detectable X-ray luminosities and use these to calibrate the age-activity relationship. We find a relationship between stellar X-ray luminosity, normalized by stellar surface area, and age that is steeper than the relationships found for younger stars, with an exponent of $-2.80 pm 0.72$. Previous studies have found values for the exponent of the age-activity relationship ranging between -1.09 to -1.40, dependent on spectral type, for younger stars. Given that there are recent reports of a flattening relationship between age and rotational period for old cool stars, one possible explanation is that we witness a strong steepening of the relationship between activity and rotation.



قيم البحث

اقرأ أيضاً

We investigate photometric variations due to stellar activity which induce systematic radial-velocity errors (so-called jitter) for the four targets in the Hyades open cluster observed by the K2 mission (EPIC 210721261, EPIC 210923016, EPIC 247122957 , and EPIC 247783757). Applying Gaussian process regressions to the K2 light curves and the near-infrared (NIR) light curves observed with the IRSF 1.4-m telescope, we derive the wavelength dependences of the photometric signals due to stellar activity. To estimate the temporal variations in the photometric variability amplitudes between the two observation periods of K2 and IRSF, separated by more than 2 years, we analyze a number of K2 targets in Hyades that have also been observed in Campaigns 4 and 13 and find a representative variation rate over 2 years of 38%pm71%. Taking this temporal variation into account, we constrain projected sizes and temperature contrast properties of the starspots in the stellar photosphere to be approximately 10% and 0.95, respectively. These starspot properties can induce relatively large differences in the variability amplitude over different observational passbands, and we find that radial-velocity jitter may be more suppressed in the NIR than previously expected. Our result supports profits of on-going exoplanet search projects that are attempting to detect or confirm young planets in open clusters via radial-velocity measurements in the NIR.
Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle Nebula that have prominent near-infrared (NIR) excess and optical colours typical of pre-main sequence (PMS) stars older than 8 Myr. At least half of those for which spectroscopy exists have a Halpha emission line profile revealing active accretion. In principle, the V-I colours of all these stars would be consistent with those of young PMS objects (< 1 Myr) whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only account for a few percent of this population. In fact, the spatial distribution of these objects, their X-ray luminosities, their optical brightness, their positions in the colour-magnitude diagram and the weak Li absorption lines of the stars studied spectroscopically suggest that most of them are at least 8 times older than the ~1 Myr-old PMS stars already known in this cluster and could be as old as ~30 Myr. This is the largest homogeneous sample to date of Galactic PMS stars considerably older than 8 Myr that are still actively accreting from a circumstellar disc and it allows us to set a lower limit of 7% to the disc frequency at ~16 Myr in NGC 6611. These values imply a characteristic exponential lifetime of ~6 Myr for disc dissipation.
137 - A. A. Vidotto 2014
Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be v ery different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session Cool stars and Space Weather, that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.
We present a summary of the splinter session Sun-like stars unlike the Sun that was held on 09 June 2016 as part of the Cool Stars 19 conference (Uppsala, Sweden). We discussed the main limitations (in the theory and observations) in the derivation o f very precise stellar parameters and chemical abundances of Sun-like stars. We outlined and discussed the most important and most debated processes that can produce chemical peculiarities in solar-type stars. Finally, in an open discussion between all the participants we tried to identify new pathways and prospects towards future solutions of the currently open questions.
The large majority of stars in the Milky Way are late-type dwarfs, and the frequency of low-mass exoplanets in orbits around these late-type dwarfs appears to be high. In order to characterize the radiation environments and habitable zones of the coo l exoplanet host stars, stellar radius and effective temperature, and thus luminosity, are required. It is in the stellar low-mass regime, however, where the predictive power of stellar models is often limited by sparse data volume with which to calibrate the methods. We show results from our CHARA survey that provides directly determined stellar parameters based on interferometric diameter measurements, trigonometric parallax, and spectral energy distribution fitting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا