We analyze exotic matter representations that arise on singular seven-brane configurations in F-theory. We develop a general framework for analyzing such representations, and work out explicit descriptions for models with matter in the 2-index and 3-index symmetric representations of SU($N$) and SU(2) respectively, associated with double and triple point singularities in the seven-brane locus. These matter representations are associated with Weierstrass models whose discriminants vanish to high order thanks to nontrivial cancellations possible only in the presence of a non-UFD algebraic structure. This structure can be described using the normalization of the ring of intrinsic local functions on a singular divisor. We consider the connection between geometric constraints on singular curves and corresponding constraints on the low-energy spectrum of 6D theories, identifying some new examples of apparent swampland theories that cannot be realized in F-theory but have no apparent low-energy inconsistency.