ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient universal quantum channel simulation in IBMs cloud quantum computer

159   0   0.0 ( 0 )
 نشر من قبل Tao Xin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of quantum channels is the fundamental field and promises wide range of applications, because any physical process can be represented as a quantum channel transforming an initial state into a final state. Inspired by the method performing non-unitary operator by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of universal single-qubit channel, described by a convex combination of quasiextreme channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrate the whole algorithm experimentally using the universal IBM cloud quantum computer and study properties of different qubit quantum channels. We illustrate the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behaviour of quantum capacity in different channels reveal which types of noise processes can support information transmission, and which types are too destructive to protect information. There is a general agreement between the theoretical predictions and the experiments, which strongly supported our method. By realizing arbitrary qubit channel, this work provides a universal way to explore various properties of quantum channel and novel prospect of quantum communication.



قيم البحث

اقرأ أيضاً

104 - Barry C. Sanders 2013
A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely ap proximate physical states obtained from a broad class of dynamical evolutions. I provide an overview of theoretical research into universal quantum simulators and the strategies for minimizing computational space and time costs. Applications to simulating many-body quantum simulation and solving linear equations are discussed.
A key requirement to perform simulations of large quantum systems on near-term quantum hardware is the design of quantum algorithms with short circuit depth that finish within the available coherence time. A way to stay within the limits of coherence is to reduce the number of gates by implementing a gate set that matches the requirements of the specific algorithm of interest directly in hardware. Here, we show that exchange-type gates are a promising choice for simulating molecular eigenstates on near-term quantum devices since these gates preserve the number of excitations in the system. Complementing the theoretical work by Barkoutsos et al. [PRA 98, 022322 (2018)], we report on the experimental implementation of a variational algorithm on a superconducting qubit platform to compute the eigenstate energies of molecular hydrogen. We utilize a parametrically driven tunable coupler to realize exchange-type gates that are configurable in amplitude and phase on two fixed-frequency superconducting qubits. With gate fidelities around 95% we are able to compute the eigenstates within an accuracy of 50 mHartree on average, a limit set by the coherence time of the tunable coupler.
We provide fast algorithms for simulating many body Fermi systems on a universal quantum computer. Both first and second quantized descriptions are considered, and the relative computational complexities are determined in each case. In order to accom modate fermions using a first quantized Hamiltonian, an efficient quantum algorithm for anti-symmetrization is given. Finally, a simulation of the Hubbard model is discussed in detail.
Universal control of quantum systems is a major goal to be achieved for quantum information processing, which demands thorough understanding of fundamental quantum mechanics and promises applications of quantum technologies. So far, most studies conc entrate on ideally isolated quantum systems governed by unitary evolutions, while practical quantum systems are open and described by quantum channels due to their inevitable coupling to environment. Here, we experimentally simulate arbitrary quantum channels for an open quantum system, i.e. a single photonic qubit in a superconducting quantum circuit. The arbitrary channel simulation is achieved with minimum resource of only one ancilla qubit and measurement-based adaptive control. By repetitively implementing the quantum channel simulation, we realize an arbitrary Liouvillian for a continuous evolution of an open quantum system for the first time. Our experiment provides not only a testbed for understanding quantum noise and decoherence, but also a powerful tool for full control of practical open quantum systems.
For the anticipated application of quantum computing in electronic structure simulation, we propose a systematically improvable end-to-end pipeline to overcome the resource and noise limitations prevalent on developing quantum hardware. Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons. On the most aggressive decomposition setting, the original 20-qubit system is divided into 10 two-qubit subproblems. Combining this decomposition with circuit optimization and density matrix purification, we are able to accurately reproduce the potential energy curve in agreement with the full configuration interaction energy in the minimal basis set. Although problem decomposition techniques are generally approximate methods, the induced error can often be systematically suppressed by increasing the size of the subproblems. This allows our pipeline to become applicable to more-complex systems as quantum computers grow in computational capacity. Our experimental results are an early step in demonstrating how the appropriate choice of decomposition could be a critical component for enabling the quantum simulation of larger, more industrially relevant molecules using fewer computational resources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا