In previous implementations of adiabatic quantum algorithms using spin systems, the average Hamiltonian method with Trotters formula was conventionally adopted to generate an effective instantaneous Hamiltonian that simulates an adiabatic passage. However, this approach had issues with the precision of the effective Hamiltonian and with the adiabaticity of the evolution. In order to address these, we here propose and experimentally demonstrate a novel scheme for adiabatic quantum computation by using the intrinsic Hamiltonian of a realistic spin system to represent the problem Hamiltonian while adiabatically driving the system by an extrinsic Hamiltonian directly induced by electromagnetic pulses. In comparison to the conventional method, we observed two advantages of our approach: improved ease of implementation and higher fidelity. As a showcase example of our approach, we experimentally factor 291311, which is larger than any other quantum factorization known.