ﻻ يوجد ملخص باللغة العربية
In previous implementations of adiabatic quantum algorithms using spin systems, the average Hamiltonian method with Trotters formula was conventionally adopted to generate an effective instantaneous Hamiltonian that simulates an adiabatic passage. However, this approach had issues with the precision of the effective Hamiltonian and with the adiabaticity of the evolution. In order to address these, we here propose and experimentally demonstrate a novel scheme for adiabatic quantum computation by using the intrinsic Hamiltonian of a realistic spin system to represent the problem Hamiltonian while adiabatically driving the system by an extrinsic Hamiltonian directly induced by electromagnetic pulses. In comparison to the conventional method, we observed two advantages of our approach: improved ease of implementation and higher fidelity. As a showcase example of our approach, we experimentally factor 291311, which is larger than any other quantum factorization known.
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shors algorithm. We implement the algorithm in an NMR quantum information processor and experimentally factorize the number 21. Numerical simulations in
Open quantum systems and study of decoherence are important for our fundamental understanding of quantum physical phenomena. For practical purposes, there exists a large number of quantum protocols exploiting quantum resources, e.g. entanglement, whi
Adiabatic quantum computing has recently been used to factor 56153 [Dattani & Bryans, arXiv:1411.6758] at room temperature, which is orders of magnitude larger than any number attempted yet using Shors algorithm (circuit-based quantum computation). H
Based on a `shortcut-to-adiabaticity (STA) scheme, we theoretically design and experimentally realize a set of high-fidelity single-qubit quantum gates in a superconducting Xmon qubit system. Through a precise microwave control, the qubit is driven t
Quantum integer factorization is a potential quantum computing solution that may revolutionize cryptography. Nevertheless, a scalable and efficient quantum algorithm for noisy intermediate-scale quantum computers looks far-fetched. We propose an alte