ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Profile Spoof Surface Plasmon Polaritons Traveling-Wave Antenna for Endfire Radiation

123   0   0.0 ( 0 )
 نشر من قبل Qingfeng Zhang Prof.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a low-profile and highly efficient endfire radiating travelling-wave antenna based on spoof surface plasmon polaritons (SSPPs) transmission line. The aperture is approximately $0.32lambda_0times0.01lambda_0$ where $lambda_0$ is the space wavelength at the operational frequency 8 GHz. This antenna provides an endfire radiation beam within 7.5-8.5 GHz. The maximum gain and total efficiency reaches 9.2 dBi and $96%$, respectively. In addition to the endfire operation, it also provides a beam scanning functionality within 9-12 GHz. Measurement results are finally given to validate the proposed SSPPs antenna.



قيم البحث

اقرأ أيضاً

This paper proposes two spoof surface plasmon polariton (SSPP) leaky-wave antennas using periodically loaded patches above perfect electric conductor (PEC) and artificial magnetic conductor (AMC) ground planes, respectively. The SSPP leaky-wave anten na is based on a SSPP transmission line, along which circular patches are periodically loaded on both sides to provide an additional momentum for phase matching with the radiated waves in the air. The PEC and AMC ground planes underneath the antenna reflect the radiated waves into the upward space, leading to an enhanced radiation gain. Both PEC- and AMC-grounded antenna prototypes are fabricated and measured in comparison with the one without any ground plane. The experimental results show that the PEC and AMC ground planes increase the radiation gain by approximately 3 dB within the operational frequency range 4.5-6.5 GHz. It also demonstrates that the AMC-grounded leaky-wave antenna, with a thickness of 0.08lambda at 6 GHz, features more compact profile than the PEC-grounded one (with a thickness of 0.3lambda at 6 GHz).
140 - Qi Zhang , Chaohua Tan , Chao Hang 2018
We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that, by using the transverse-magnetic mode and the related dest ructive interference effect between electric and magnetic absorption responses, the propagation loss of the Airy SPPs can be largely suppressed when the optical frequency is close to the lossless point of the NIMM. As a result, the Airy SPPs obtained in our scheme can propagate more than 6-time long distance than that in conventional dielectric-metal interfaces.
Spoof surface plasmon meta-couplers are compact antennas which link propagating waves and surface waves. However, most of them are designed with a fixed phase gradient and channel for the incident waves with specific polarization, which limits their further applications in multichannel scenarios. In this Letter, we propose, to the best of our knowledge, a new method that combines the Brillouin folds theory with the Generalized Snell Law. We demonstrate that when the phase gradient of the metasurface is large enough, Brillouin folds effect will occur, which will create dual phase gradient space in a single metasurface. With this method, we design two novel terahertz meta-couplers with functionalities of symmetrical and asymmetrical binary-channel/bidirectional SSP excitation. Furthermore, finite element method (FEM) simulations are performed to demonstrate their functionalities. Considering the orthogonality of the incident waves, there can be a total of four independent space channels to excite SSP on one metasurface. This work may open up new routes in multi-channel SSP meta-couplers and multi-beam surface wave antennas.
65 - P. N. Terekhin 2019
The accurate calculation of laser energy absorption during femto- or picosecond laser pulse experiments is very important for the description of the formation of periodic surface structures. On a rough material surface, a crack or a step edge, ultras hort laser pulses can excite surface plasmon polaritons (SPP), i.e. surface plasmons coupled to a laser-electromagnetic wave. The interference of such plasmon wave and the incoming pulse leads to a periodic modulation of the deposited laser energy on the surface of the sample. In the present work, within the frames of a Two Temperature Model we propose the analytical form of the source term, which takes into account SPP excited at a step edge of a dielectric-metal interface upon irradiation of an ultrashort laser pulse at normal incidence. The influence of the laser pulse parameters on energy absorption is quantified for the example of gold. This result can be used for nanophotonic applications and for the theoretical investigation of the evolution of electronic and lattice temperatures and, therefore, of the formation of surfaces with predestined properties under controlled conditions.
We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver fil m. Stimulated emission was characterized by a distinct threshold in the input-output dependence and narrowing of the emission spectrum. The observed stimulated emission and corresponding to it compensation of the metallic absorption loss by gain enables many applications of metamaterials and nanoplasmonic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا