ﻻ يوجد ملخص باللغة العربية
Quantifying coherence is an essential endeavor for both quantum foundations and quantum technologies. In this paper, we put forward a quantitative measure of coherence by following the axiomatic definition of coherence measures introduced in [T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. Our measure is based on fidelity and analytically computable for arbitrary states of a qubit. As one of its applications, we show that our measure can be used to examine whether a pure qubit state can be transformed into another pure or mixed qubit state only by incoherent operations.
Purity and coherence of a quantum state are recognized as useful resources for various information processing tasks. In this article, we propose a fidelity based valid measure of purity and coherence monotone and establish a relationship between them
We study the geometric measure of quantum coherence recently proposed in [Phys. Rev. Lett. 115, 020403 (2015)]. Both lower and upper bounds of this measure are provided. These bounds are shown to be tight for a class of important coherent states -- m
We make a detailed analysis of quantumness for various quantum noise channels, both Markovian and non-Markovian. The noise channels considered include dephasing channels like random telegraph noise, non-Markovian dephasing and phase damping, as well
We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear
As an analogy of best separable approximation (BSA) in the framework of entanglement theory, here we concentrate on the notion of best incoherent approximation, with application to characterizing and quantifying quantum coherence. From both analytica