ﻻ يوجد ملخص باللغة العربية
Beyond the attractive strong potential needed for hadronic bound states, strong interactions are predicted to provide repulsive forces depending on the color charges involved. The repulsive interactions could in principle serve for particle acceleration with highest gradients in the order of GeV/fm. Indirect evidence for repulsive interactions have been reported in the context of heavy meson production at colliders. In this contribution, we sketch a thought experiment to directly investigate repulsive strong interactions. For this we prepare two quarks using two simultaneous deep inelastic scattering processes off an iron target. We discuss the principle setup of the experiment and estimate the number of electrons on target required to observe a repulsive effect between the quarks.
One of the major open questions in particle physics is the issue of the neutrino mass ordering (NMO). The current data of the two long-baseline experiments NO$ u$A and T2K, interpreted in the standard 3-flavor scenario, provide a $sim2.4sigma$ indica
Dalitz-plot analyses of $Brightarrow Kpipi$ decays provide direct access to decay amplitudes, and thereby weak and strong phases can be disentangled by resolving the interference patterns in phase space between intermediate resonant states. A phenome
The exclusive production of axionlike particles (ALPs) by gluon -- induced interactions is investigated in this exploratory study considering $pp$ and $PbPb$ collisions for the energies of the next run of the Large Hadron Collider (LHC). Assuming the
A renormalizable non-Abelian theory of strong interactions of pions, mediated by rho-mesons, is formulated at tree- and at one-loop level in perturbation theory. Hadron masses are generated through spontaneous symmetry breaking using the Higgs mechan
We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.