ﻻ يوجد ملخص باللغة العربية
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, $left< sigma v right>$, which are consistent with the observed relic abundance in the case of spin-1 dark matter. We examine constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.
Randall Sundrum models provide a possible explanation of (gauge-gravity) hierarchy, whereas discrete symmetry flavor groups yield a possible description of the texture of Standard Model fermion masses. We use both these ingredients to propose a five-
We present a Randall-Sundrum toy model with an added scalar singlet that couples only to KK fermions in the bulk. Such a scalar would nontrivially affect radion phenomenology. In addition, we examine the radion phenomenology in light of the new scala
We present a variant of the warped extra dimension, Randall-Sundrum (RS), framework which is based on five dimensional (5D) minimal flavor violation (MFV), in which the only sources of flavor breaking are two 5D anarchic Yukawa matrices. The Yukawa m
We propose a simple and predictive model of fermion masses and mixing in a warped extra dimension, with the smallest discrete non-Abelian group $S_{3}$ and the discrete symmetries $Z_{2}otimes Z_{4}$. Standard Model fields propagate in the bulk and t
Lepton number as a fourth color is the intriguing theoretical idea of the famous Pati-Salam (PS) model. While in conventional PS models, the symmetry breaking scale and the mass of the resulting vector leptoquark are stringently constrained by $K_Lto