ﻻ يوجد ملخص باللغة العربية
Given a Borel measure $mu$ on ${mathbb R}^{n}$, we define a convex set by [ M({mu})=bigcup_{substack{0le fle1, int_{{mathbb R}^{n}}f,{rm d}{mu}=1 } }left{ int_{{mathbb R}^{n}}yfleft(yright),{rm d}{mu}left(yright)right} , ] where the union is taken over all $mu$-measurable functions $f:{mathbb R}^{n}toleft[0,1right]$ with $int_{{mathbb R}^{n}}f,{rm d}{mu}=1$. We study the properties of these measure-generated sets, and use them to investigate natural variations of problems of approximation of general convex bodies by polytopes with as few vertices as possible. In particular, we study an extension of the vertex index which was introduced by Bezdek and Litvak. As an application, we provide a lower bound for certain average norms of centroid bodies of non-degenerate probability measures.
The $K$-hull of a compact set $Asubsetmathbb{R}^d$, where $Ksubset mathbb{R}^d$ is a fixed compact convex body, is the intersection of all translates of $K$ that contain $A$. A set is called $K$-strongly convex if it coincides with its $K$-hull. We p
Let $K$ be a convex body in $mathbb{R}^n$ and $f : partial K rightarrow mathbb{R}_+$ a continuous, strictly positive function with $intlimits_{partial K} f(x) d mu_{partial K}(x) = 1$. We give an upper bound for the approximation of $K$ in the symmet
The paper is devoted to coverings by translative homothets and illuminations of convex bodies. For a given positive number $alpha$ and a convex body $B$, $g_{alpha}(B)$ is the infimum of $alpha$-powers of finitely many homothety coefficients less tha
We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bo
Barker and Larman asked the following. Let $K subset {Bbb{R}}^d$ be a convex body, whose interior contains a given convex body $K subset {Bbb{R}}^d$, and let, for all supporting hyperplanes $H$ of $K$, the $(d-1)$-volumes of the intersections $K cap