ﻻ يوجد ملخص باللغة العربية
We take advantage of the exquisite quality of the Hubble Space Telescope 26-filter astro-photometric catalog of the core of Omega Cen presented in the first paper of this series and the empirical differential-reddening correction presented in the second paper in order to distill the main sequence into its constituent populations. To this end, we restrict ourselves to the five most useful filters: the magic trio of F275W, F336W, and F438W, along with F606W and F814W. We develop a strategy for identifying color systems where different populations stand out most distinctly, then we isolate those populations and examine them in other filters where their sub-populations also come to light. In this way, we have identified at least 15 sub-populations, each of which has a distinctive fiducial curve through our 5-dimensional photometric space. We confirm the MSa to be split into two subcomponents, and find that both the bMS and the rMS are split into three subcomponents. Moreover, we have discovered two additional MS groups: the MSd (which has three subcomponents) shares similar properties with the bMS, and the MSe (which has four subcomponents), has properties more similar to those of the rMS. We examine the fiducial curves together and use synthetic spectra to infer relative heavy-element, light-element, and Helium abundances for the populations. Our findings show that the stellar populations and star formation history of Omega Cen are even more complex than inferred previously. Finally, we provide as a supplement to the original catalog a list that identifies for each star which population it most likely is associated with.
We have constructed the most-comprehensive catalog of photometry and proper motions ever assembled for a globular cluster (GC). The core of $omega$Cen has been imaged over 650 times through WFC3s UVIS and IR channels for the purpose of detector calib
We take advantage of the exquisite quality of the Hubble Space Telescope astro-photometric catalog of the core of wCen presented in the first paper of this series to derive a high-resolution, high-precision, high-accuracy differential-reddening map o
$omega$ Cen is a rare example of a globular cluster where the iron abundance of the stars spans more than one order of magnitude. Many spectroscopic investigations of its red-giant- and sub-giant- branches have revealed multiple peaks in the iron abu
The galactic globular cluster Omega Centauri is the most massive of its kind, with a complex mix of multiple stellar populations and several kinematic and dynamical peculiarities. Different mean proper motions have been detected among the three main
We present a detailed study of the radial distribution of the multiple populations identified in the Galactic globular cluster omega Cen. We used both space-based images (ACS/WFC and WFPC2) and ground-based images (FORS1@VLT and
[email protected] ESO telescop