ترغب بنشر مسار تعليمي؟ اضغط هنا

The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

102   0   0.0 ( 0 )
 نشر من قبل Christopher S. Kochanek
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. S. Kochanek




اسأل ChatGPT حول البحث

The All-Sky Automated Survey for Supernovae (ASAS-SN) is working towards imaging the entire visible sky every night to a depth of V~17 mag. The present data covers the sky and spans ~2-5~years with ~100-400 epochs of observation. The data should contain some ~1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.



قيم البحث

اقرأ أيضاً

We present Citizen ASAS-SN, a citizen science project hosted on the Zooniverse platform which utilizes data from the All-Sky Automated Survey for SuperNovae (ASAS-SN). Volunteers are presented with ASAS-SN $g$-band light curves of variable star candi dates. The classification workflow allows volunteers to classify these sources into major variable groups, while also allowing for the identification of unique variable stars for additional follow-up.
We have developed an interactive PYTHON code and derived crucial ephemeris data of 99.4% of all stars classified as Mira in the ASAS data base, referring to pulsation periods, mean maximum magnitudes and, whenever possible, the amplitudes among other s. We present a statistical comparison between our results and those given by the AAVSO International Variable Star Index (VSX), as well as those determined with the machine learning automatic procedure of Richards et al. 2012. Our periods are in good agreement with those of the VSX in more than 95% of the stars. However, when comparing our periods with those of Richards et al, the coincidence rate is only 76% and most of the remaining cases refer to aliases. We conclude that automatic codes require still more refinements in order to provide reliable period values. Period distributions of the target stars show three local maxima around 215, 275 and 330 d, apparently of universal validity, their relative strength seems to depend on galactic longitude. Our visual amplitude distribution turns out to be bimodal, however 1/3 of the targets have rather small amplitudes (A $<$ 2.5$^{m}$) and could refer to semi-regular variables (SR). We estimate that about 20% of our targets belong to the SR class. We also provide a list of 63 candidates for period variations and a sample of 35 multiperiodic stars which seem to confirm the universal validity of typical sequences in the double period and in the Petersen diagrams
The second Gaia data release is expected to contain data products from about 22 months of observation. Based on these data, we aim to provide an advance publication of a full-sky Gaia map of RR Lyrae stars. Although comprehensive, these data still co ntain a significant fraction of sources which are insufficiently sampled for Fourier series decomposition of the periodic light variations. The challenges in the identification of RR Lyrae candidates with (much) fewer than 20 field-of-view transits are described. General considerations of the results, their limitations, and interpretation are presented together with prospects for improvement in subsequent Gaia data releases.
Most dynamically confirmed stellar-mass black holes and the candidates were originally selected from X-ray outbursts. In the present work, we search for black hole candidates in the LAMOST survey by using the spectra along with photometry from the AS AS-SN survey, where the orbital period of the binary may be revealed by the periodic light curve, such as the ellipsoidal modulation type. Our sample consists of 9 binaries, where each source contains a giant star with large radial velocity variation ($Delta V_{rm R} > 70~{rm km~s^{-1}}$) and periods known from light curves. We focus on the 9 sources with long periods ($T_{rm ph} > 5$ days) and evaluate the mass $M_2$ of the optically invisible companion. Since the observed $Delta V_{rm R}$ from only a few repeating spectroscopic observations is a lower limit of the real amplitude, the real mass $M_2$ can be significantly higher than the current evaluation. It is likely an efficient method to place constraints on $M_2$ by combining $Delta V_{rm R}$ from LAMOST and $T_{rm ph}$ from ASAS-SN, particularly by the ongoing LAMOST Medium Resolution Survey.
We revisit the evidence for the contribution of the long-lived radioactive nuclides 44Ti, 55Fe, 56Co, 57Co, and 60Co to the UVOIR light curve of SN 1987A. We show that the V-band luminosity constitutes a roughly constant fraction of the bolometric lu minosity between 900 and 1900 days, and we obtain an approximate bolometric light curve out to 4334 days by scaling the late time V-band data by a constant factor where no bolometric light curve data is available. Considering the five most relevant decay chains starting at 44Ti, 55Co, 56Ni, 57Ni, and 60Co, we perform a least squares fit to the constructed composite bolometric light curve. For the nickel isotopes, we obtain best fit values of M(56Ni) = (7.1 +- 0.3) x 10^{-2} Msun and M(57Ni) = (4.1 +- 1.8) x 10^{-3} Msun. Our best fit 44Ti mass is M(44Ti) = (0.55 +- 0.17) x 10^{-4} Msun, which is in disagreement with the much higher (3.1 +- 0.8) x 10^{-4} Msun recently derived from INTEGRAL observations. The associated uncertainties far exceed the best fit values for 55Co and 60Co and, as a result, we only give upper limits on the production masses of M(55Co) < 7.2 x 10^{-3} Msun and M(60Co) < 1.7 x 10^{-4} Msun. Furthermore, we find that the leptonic channels in the decay of 57Co (internal conversion and Auger electrons) are a significant contribution and constitute up to 15.5% of the total luminosity. Consideration of the kinetic energy of these electrons is essential in lowering our best fit nickel isotope production ratio to [57Ni/56Ni]=2.5+-1.1, which is still somewhat high but is in agreement with gamma-ray observations and model predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا