ﻻ يوجد ملخص باللغة العربية
We use a smoothed particle hydrodynamics (SPH) code to examine the effects of misaligned binary companions on Be star discs. We systematically vary the degree of misalignment between the disc and the binary orbit, as well as the disc viscosity and orbital period to study their effects on the density in the inner and outer parts of the disc. We find that varying the degree of misalignment, the viscosity, and the orbital period affects both the truncation radius and the density structure of the outer disc, while the inner disc remains mostly unaffected. We also investigate the tilting of the disc in the innermost part of the disc and find the tilt increases with radius until reaching a maximum around 5 stellar radii. The direction of the line of nodes, with respect to the equator of the central star, is found to be offset compared to the orbital line of nodes, and to vary periodically in time, with a period of half a orbital phase. We also compare the scale height of our discs with the analytical scale height of an isothermal disc, which increases with radius as $r^{1.5}$. We find that this formula reproduces the scale height well for both aligned and misaligned systems but underestimates the scale height in regions of the disc where density enhancements develop.
Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the compa
We use a smoothed particle hydrodynamics (SPH) code to examine the effects of a binary companion on a Be star disk for a range of disk viscosities and misalignment angles, i.e. the angle between the orbital plane and the primarys spin axis. The densi
The tidal interaction of a Be star with a binary companion forms two spiral arms that cause orbital modulation of the Be disc structure. The aim of this work is to identify observables in which this modulation is apparent. The structure of a Be disc
Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle in
Context. Abridged. Many stars are members of binary systems. During early phases when the stars are surrounded by discs, the binary orbit and disc midplane may be mutually inclined. The discs around T Tauri stars will become mildly warped and undergo