ﻻ يوجد ملخص باللغة العربية
We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zero-temperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. Our consideration is applicable to all single-component Galilean-invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.
We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the
In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. We demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of
We study interaction-induced Mott insulators, and their topological properties in a 1D non-Hermitian strongly-correlated spinful fermionic superlattice system with either nonreciprocal hopping or complex-valued interaction. For the nonreciprocal hopp
When Fermi surfaces (FS) are subject to long-range interactions that are marginal in the renormalization-group sense, Landau Fermi liquids are destroyed, but only barely. With the interaction further screened by particle-hole excitations through one-
This chapter is intended as a brief overview of some of the quantum spin liquid phases with unbroken SU(2) spin symmetry available in one dimension. The main characteristics of these phases are discussed by means of the bosonization approach. A speci