A polarity-dependent reversible change in the current-voltage characteristics between states corresponding to different values of the excess current Iexc is observed for bias voltages of several hundred millivolts in YBaCuO-Ag point contacts in the current-carrying state.
A polarity-dependent reversible change in the current-voltage characteristics between states corresponding to different values of the excess current ${{I}_{exc}}$ is observed for bias voltages of several hundred millivolts in $Ag-ReB{{a}_{2}}C{{u}_{3
}}{{O}_{7-x}}$ $left( Retext{ }=text{ }Y,text{ }Ho right)$ point contacts in the current-carrying state. The observed effect has a high intensity (right up to a complete suppression or recovery of ${{I}_{exc}}$) and is not accompanied by a noticeable variation of the energy gap or the critical temperature in the point contact region. It is also established that the states with intermediate values of $I_{exc}$ are stable for zero bias voltages across the point contacts, at least up to $110 K$. It is assumed that the variation of ${{I}_{exc}}$ and the corresponding modification of IVC are due to the oxygen migration processes induced by the electric field and current, resulting in a local variation of the superconducting parameters in the point-contact region.
We present a study of the Andreev reflections in superconductor/ferromagnet nanostructured point contacts. The experimental data are analyzed in the frame of a model with two spin-dependent transmission coefficients for the majority and minority char
ge carriers in the ferromagnet. This model consistently describes the whole set of conductance measurements as a function of voltage, temperature, and magnetic field. The ensemble of our results shows that the degree of spin polarization of the current can be unambiguously determined using Andreev physics.
Magnetoresistive properties of granular Bi-based HTSC with trapped magnetic fields are investigated in the temperature region near superconducting transition . The effect of trapped field and transport current values and orientations on the field dep
endence of magnetoresistance is studied. It is found that for the magnetic field parallel and the current perpendicular to trapping inducing field the field dependence of magnetoresistance is nonmonotonic and magnetoresistance turns out to be negative for small fields. The magnetoresistance sign inversion field increases roughly linear with the trapped magnetic field and slightly decrease with transport current. The results are explained in the framework of model of magnetic flux trapping in granules or superconducting loops embedded in weak links matrix.
There is an increasing amount of literature concerning electronic properties of graphene close to the neutrality point. Many experiments continue using the two-probe geometry or invasive contacts or do not control samples macroscopic homogeneity. We
believe that it is helpful to point out some problems related to such measurements. By using experimental examples, we illustrate that the charge inhomogeneity induced by spurious chemical doping or metal contacts can lead to large systematic errors in assessing graphenes transport properties and, in particular, its minimal conductivity. The problems are most severe in the case of two-probe measurements where the contact resistance is found to strongly vary as a function of gate voltage.
The point-contact spectra of tantalum in the superconducting state, with $Ta$, $Cu$, and $Au$ counterelectrodes, have been studied. We discovered some new distinctive features, whose position on the $eV$ axis is determined by the critical power requi
red for the injection of nonequilibriumquasiparticles. At this level of power the band gap $Delta $ decreases abruptly in the vicinity of the contact. A correction to the point-contact spectrum, with the sign opposite to that of the usual correction, arises in the region of phonon energies. The maxima in the $Ta$ spectrum become sharper and their position on the energy axis becomes stabilized near the values $e{{V}_{ph}}=7.0$, 11.3, 15.5, and 18 $meV$, which correspond to low phonon group velocities $partial omega /partial qsimeq 0$ in $Ta$. This is confirmed by the existence of corresponding flattenings on the dispersion relations $omega (q)$ of lattice vibrations. Slow phonons are created near the $N-S$ interface in quasiparticle recombination and relaxation processes and cause a decrease in $Delta $ and an increase in the differential resistance in the vicinity of $e{{V}_{ph}}$. An excess quasiparticle charge is accumulated in the region of the contact, producing a correction to the resistance, which decreases as $eV$, $T$, and $H$ increase. These mechanisms are particularly effective in dirty contacts, thus permitting phonon spectroscopy in the superconducting state even when the current flow occurs in a nearly thermal mode.
I.K. Yanson
,V.V. Fisun
,L.F. Rybaltchenko
.
(2017)
.
"Influence of electrical and magnetic fields on the excess current in HTSC - normal metal point contacts"
.
Nickolai Bobrov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا