ترغب بنشر مسار تعليمي؟ اضغط هنا

A new view of the giant molecular cloud M16 (Eagle Nebula) in 12CO J=1-0 and 2-1 transitions with NANTEN2

140   0   0.0 ( 0 )
 نشر من قبل Atsushi Nishimura
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

M16, the Eagle Nebula, is an outstanding HII region where extensive high-mass star formation is taking place in the Sagittarius Arm, and hosts the remarkable pillars observed with HST. We made new CO observations of the region in the 12CO J=1--0 and J=2--1 transitions with NANTEN2. These observations revealed for the first time that a giant molecular cloud of $sim 1.3 times 10^5$ Msun is associated with M16, which is elongated vertically to the Galactic plane over 35 pc at a distance of 1.8 kpc. We found a cavity of the molecular gas of $sim 10$ pc diameter toward the heart of M16 at lbeq (16.95degree, 0.85degree), where more than 10 O-type stars and $sim 400$ stars are associated, in addition to a close-by molecular cavity toward a Spitzer bubble N19 at lbeq (17.06degree, 1.0degree). We found three velocity components which show spatially complementary distribution in the entire M16 giant molecular cloud (GMC) including NGC6611 and N19, suggesting collisional interaction between them. Based on the above results we frame a hypothesis that collision between the red-shifted and blue-shifted components at a relative of $sim 10$ kms triggered formation of the O-type stars in the M16 GMC in the last 1-2 Myr. The collision is two fold in the sense that one of the collisional interactions is major toward the M16 cluster and the other toward N19 with a RCW120 type, the former triggered most of the O star formation with almost full ionization of the parent gas, and the latter an O star formation in N19.



قيم البحث

اقرأ أيضاً

150 - N. Furukawa , A. Ohama , T. Fukuda 2014
We have made new CO observations of two molecular clouds, which we call jet and arc clouds, toward the stellar cluster Westerlund 2 and the TeV gamma-ray source HESS J1023-575. The jet cloud shows a linear structure from the position of Westerlund 2 on the east. In addition, we have found a new counter jet cloud on the west. The arc cloud shows a crescent shape in the west of HESS J1023-575. A sign of star formation is found at the edge of the jet cloud and gives a constraint on the age of the jet cloud to be ~Myrs. An analysis with the multi CO transitions gives temperature as high as 20 K in a few places of the jet cloud, suggesting that some additional heating may be operating locally. The new TeV gamma-ray images by H.E.S.S. correspond to the jet and arc clouds spatially better than the giant molecular clouds associated with Westerlund 2. We suggest that the jet and arc clouds are not physically linked with Westerlund 2 but are located at a greater distance around 7.5 kpc. A microquasar with long-term activity may be able to offer a possible engine to form the jet and arc clouds and to produce the TeV gamma-rays, although none of the known microquasars have a Myr age or steady TeV gamma-rays. Alternatively, an anisotropic supernova explosion which occurred ~Myr ago may be able to form the jet and arc clouds, whereas the TeV gamma-ray emission requires a microquasar formed after the explosion.
150 - C.L. Taylor , C.D. Wilson 1997
We present 12CO J=1-0 observations from the Caltech Millimeter Array of a field in the nearby spiral galaxy M81. We detect emission from three features that are the size of large giant molecular clouds (GMCs) in the Milky Way Galaxy and M31, but are larger than any known in M33 or the SMC. The M81 clouds have diameters approximately 100 pc and molecular masses 3 * 10^5 solar masses. These are the first GMCs to be detected in such an early type galaxy (Sab) or in a normal galaxy outside the Local Group. The clouds we have detected do not obey the size-linewidth relation obeyed by GMCs in our Galaxy and in M33, and some of them may be GMC complexes that contain several small GMCs. One of these does show signs of sub-structure, and is shaped like a ring section with three separate peaks. At the center of this ring section lies a giant HII region, which may be associated with the molecular clouds.
We present a catalogue of 12CO(J=1-0) and 13CO(J=1-0) molecular clouds in the spatio-velocity range of the Carina Flare supershell, GSH 287+04-17. The data cover a region of ~66 square degrees and were taken with the NANTEN 4m telescope, at spatial a nd velocity resolutions of 2.6 and 0.1 km/s. Decomposition of the emission results in the identification of 156 12CO clouds and 60 13CO clouds, for which we provide observational and physical parameters. Previous work suggests the majority of the detected mass forms part of a comoving molecular cloud complex that is physically associated with the expanding shell. The cloud internal velocity dispersions, degree of virialization and size-linewidth relations are found to be consistent with those of other Galactic samples. However, the vertical distribution is heavily skewed towards high-altitudes. The robust association of high-z molecular clouds with a known supershell provides some observational backing for the theory that expanding shells contribute to the support of a high-altitude molecular layer.
We have carried out 12CO(J =2-1) and 12CO(J =3-2) observations at spatial resolutions of 1.0-3.8 pc toward the entirety of loops 1 and 2 and part of loop 3 in the Galactic center with NANTEN2 and ASTE. These new results revealed detailed distribution s of the molecular gas and the line intensity ratio of the two transitions, R3-2/2-1. In the three loops, R3-2/2-1 is in a range from 0.1 to 2.5 with a peak at ~ 0.7 while that in the disk molecular gas is in a range from 0.1 to 1.2 with a peak at 0.4. This supports that the loops are more highly excited than the disk molecular gas. An LVG analysis of three transitions, 12CO J =3-2 and 2-1 and 13CO J =2-1, toward six positions in loops 1 and 2 shows density and temperature are in a range 102.2 - 104.7 cm-3 and 15-100 K or higher, respectively. Three regions extended by 50-100 pc in the loops tend to have higher excitation conditions as characterized by R3-2/2-1 greater than 1.2. The highest ratio of 2.5 is found in the most developed foot points between loops 1 and 2. This is interpreted that the foot points indicate strongly shocked conditions as inferred from their large linewidths of 50-100 km s-1, confirming the suggestion by Torii et al. (2010b). The other two regions outside the foot points suggest that the molecular gas is heated up by some additional heating mechanisms possibly including magnetic reconnection. A detailed analysis of four foot points have shown a U shape, an L shape or a mirrored-L shape in the b-v distribution. It is shown that a simple kinematical model which incorporates global rotation and expansion of the loops is able to explain these characteristic shapes.
M16, the Eagle Nebula, is an outstanding HII region which exhibits extensive high-mass star formation and hosts remarkable pillars. We herein obtained new $^{12}$CO $J=$1-0 data for the region observed with NANTEN2, which were combined with the $^{1 2}$CO $J=$1-0 data obtained using FUGIN survey. These observations revealed that a giant molecular cloud (GMC) of $sim 1.3 times 10^5$ Msun is associated with M16, which is elongated by over 30 pc and is perpendicular to the galactic plane, at a distance of 1.8 kpc. This GMC can be divided into the northern (N) cloud, the eastern (E) filament, the southeast (SE) cloud, the southeast (SE) filament, and the southern (S) cloud. We also found two velocity components (blue and red shifted component) in the N cloud. The blue-shifted component shows a ring-like structure, as well as the red-shifted component coincides with the intensity depression of the ring-like structure. The position-velocity diagram of the components showed a V-shaped velocity feature. The spatial and velocity structures of the cloud indicated that two different velocity components collided with each other at a relative velocity of 11.6 kms. The timescale of the collision was estimated to be $sim 4 times 10^5$ yr. The collision event reasonably explains the formation of the O9V star ALS15348, as well as the shape of the Spitzer bubble N19. A similar velocity structure was found in the SE cloud, which is associated with the O7.5V star HD168504. In addition, the complementary distributions of the two velocity components found in the entire GMC suggested that the collision event occurred globally. On the basis of the above results, we herein propose a hypothesis that the collision between the two components occurred sequentially over the last several $10^{6}$ yr and triggered the formation of O-type stars in the NGC6611 cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا