ﻻ يوجد ملخص باللغة العربية
We introduce a new method to construct 4-dimensional Artin-Schelter regular algebras as normal extensions of (not necessarily noetherian) 3-dimensional ones. The method produces large classes of new 4-dimensional Artin-Schelter regular algebras. When applied to a 3-Calabi-Yau algebra our method produces a flat family of central extensions of it that are 4-Calabi-Yau, and all 4-Calabi-Yau central extensions having the same generating set as the original 3-Calabi-Yau algebra arise in this way. Each normal extension has the same generators as the original 3-dimensional algebra, and its relations consist of all but one of the relations for the original algebra and an equal number of new relations determined by the missing one and a tuple of scalars satisfying some numerical conditions. We determine the Nakayama automorphisms of the 4-dimensional algebras obtained by our method and as a consequence show that their homological determinant is 1. This supports the conjecture by Mori-Smith that the homological determinant of the Nakayama automorphism is 1 for all Artin-Schelter regular connected graded algebras. Reyes-Rogalski-Zhang proved this is true in the noetherian case.
Suppose that $E=A[x;sigma,delta]$ is an Ore extension with $sigma$ an automorphism. It is proved that if $A$ is twisted Calabi-Yau of dimension $d$, then $E$ is twisted Calabi-Yau of dimension $d+1$. The relation between their Nakayama automorphisms
We study semisimple Hopf algebra actions on Artin-Schelter regular algebras and prove several upper bounds on the degrees of the minimal generators of the invariant subring, and on the degrees of syzygies of modules over the invariant subring. These
Let $Bbbk$ be a base field of characteristic $p>0$ and let $U$ be the restricted enveloping algebra of a 2-dimensional nonabelian restricted Lie algebra. We classify all inner-faithful $U$-actions on noetherian Koszul Artin-Schelter regular algebras of global dimension up to three.
We compute the Nakayama automorphism of a PBW-deformation of a Koszul Artin-Schelter Gorenstein algebra of finite global dimension, and give a criterion for an augmented PBW-deformation of a Koszul Calabi-Yau algebra to be Calabi-Yau. The relations b
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal en