ﻻ يوجد ملخص باللغة العربية
We present the high-energy emission properties of GRB 160509A, from its prompt mission to late afterglow phase. GRB 160509A contains two emission episodes: 0-40s and 280-420s after the burst onset (t0). The relatively high fluence of GRB 160509A allows us to establish an evolving spectrum above 100 MeV. During the first emission episode, the >100 MeV spectrum is soft with Gamma=>3.0, which can be smoothly connected to keV energies with a Band function with a high-energy cutoff. The >100 MeV spectrum rapidly changes to a hard spectrum with Gamma<=1.5 after t0+40s. The existence of very energetic photons, e.g., a 52 GeV that arrives t0+77 seconds, and a 29 GeV that arrives t0+70 ks, is hard to reconcile by the synchrotron emission from forward-shock electrons, but likely due to inverse Compton mechanism (e.g., synchrotron self-Compton emission). A soft spectrum (Gamma~2) between 300s and 1000s after the burst onset is also found at a significance of about 2 standard deviations, which suggests a different emission mechanism at work for this short period of time. GRB 160509A represents the latest example where inverse Compton emission has to be taken into account in explaining the afterglow GeV emission, which had been suggested long before the launch of Fermi LAT.
GRB 190114C is the first gamma-ray burst detected at Very High Energies (VHE, i.e. >300 GeV) by the MAGIC Cherenkov telescope. The analysis of the emission detected by the Fermi satellite at lower energies, in the 10 keV -- 100 GeV energy range, up t
The ultra-long Gamma Ray Burst GRB 111209A at redshift z=0.677, is so far the longest GRB ever observed, with rest frame prompt emission duration of ~4 hours. In order to explain the bursts exceptional longevity, a low metallicity blue supergiant pro
We present post-jet-break textit{HST}, VLA and textit{Chandra} observations of the afterglow of the long $gamma$-ray bursts GRB 160625B (between 69 and 209 days) and GRB 160509A (between 35 and 80 days). We calculate the post-jet-break decline rates
The Supercritical Pile is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in th
Using a detailed model of the internal shock phase, we discuss the origin of the prompt emission in gamma-ray bursts. We focus on the identification of the dominant radiative process (Fermi-GBM range) and propose an explanation for some features obse