ﻻ يوجد ملخص باللغة العربية
In this article, we define an independence system for a classical knot diagram and prove that the independence system is a knot invariant for alternating knots. We also discuss the exchange property for minimal unknotting sets. Finally, we show that there are knot diagrams where the independence system is a matroid and there are knot diagrams where it is not.
We introduce a new knot diagram invariant called the Self-Crossing Index (SCI). Using SCI, we provide bounds for unknotting two families of framed unknots. For one of these families, unknotting using framed Reidemeister moves is significantly harder
We define and study a bigraded knot invariant whose Euler characteristic is the Alexander polynomial, closely connected to knot Floer homology. The invariant is the homology of a chain complex whose generators correspond to Kauffman states for a knot
For a knot diagram we introduce an operation which does not increase the genus of the diagram and does not change its representing knot type. We also describe a condition for this operation to certainly decrease the genus. The proof involves the stud
In this paper we introduce a chain complex $C_{1 pm 1}(D)$ where D is a plat braid diagram for a knot K. This complex is inspired by knot Floer homology, but it the construction is purely algebraic. It is constructed as an oriented cube of resolution
Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as th