ترغب بنشر مسار تعليمي؟ اضغط هنا

Auroral Radio Emission from Ultracool Dwarfs: a Jovian Model

154   0   0.0 ( 0 )
 نشر من قبل Sam Turnpenney
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of fast-rotating ultra cool dwarfs (UCDs) emit pulsed coherent radiation, attributed to the electron cyclotron maser instability, a phenomenon that occurs in the solar system at planets with strong auroral emission. In this paper we examine magnetosphere-ionosphere coupling currents in UCDs, adopting processes used in models of Jovian emission. We consider the angular velocity gradient arising from a steady outward flux of angular momentum from an internal plasma source, as analogous to the jovian main oval current system, as well as the interaction of a rotating magnetosphere with the external medium. Both of these mechanisms are seen in the solar system to be responsible for the production of radio emission. We present the results of an investigation over a range of relevant plasma and magnetosphere-ionosphere coupling parameters to determine regimes consistent with observed UCD radio luminosities. Both processes are able to explain observed UCD luminosities with ionospheric Pedersen conductances of ~1-2 mho, either for a closed magnetosphere with a plasma mass outflow rate of ~10$^5$ kg/s, i.e. a factor of ~100 larger than that observed at Jupiters moon Io, or for a dwarf with an open magnetosphere moving through the interstellar medium at ~50 km/s and a plasma mass outflow rate of ~1000 kg/s. The radio luminosity resulting from these mechanisms have opposing dependencies on the magnetic field strength, a point which may be used to discriminate between the two models as more data become available.



قيم البحث

اقرأ أيضاً

142 - S. Yu , J. G. Doyle , A. Kuznetsov 2012
We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short time-scale in an atte mpt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of electromagnetic waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70$ u_{rm pe}$ ($ u_{rm pe}$ is the electron plasma frequency) in the non-relativistic case and from 10 to 600$ u_{rm pe}$ in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.
Recently, a number of ultracool dwarfs have been found to produce periodic radio bursts with high brightness temperature and polarization degree; the emission properties are similar to the auroral radio emissions of the magnetized planets of the Sola r System. We simulate the dynamic spectra of radio emission from ultracool dwarfs. The emission is assumed to be generated due to the electron-cyclotron maser instability. We consider two source models: the emission caused by interaction with a satellite and the emission from a narrow sector of active longitudes; the stellar magnetic field is modeled by a tilted dipole. We have found that for the dwarf TVLM 513-46546, the model of the satellite-induced emission is inconsistent with the observations. On the other hand, the model of emission from an active sector is able to reproduce qualitatively the main features of the radio light curves of this dwarf; the magnetic dipole seems to be highly tilted (by about 60 degrees) with respect to the rotation axis.
71 - C. Lynch , T. Murphy , V. Ravi 2016
We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 incre asing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1 - 2)$R_*$, magnetic field inclination 20$^{circ}$ - 80$^{circ}$, field strength $sim$10 - 200 G, and power-law electron density $sim$10$^4$ - 10$^8$ cm$^{-3}$. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Guedel-Benz relation by more than two orders of magnitude.
We conducted a volume-limited survey at 4.9 GHz of 32 nearby ultracool dwarfs with spectral types covering the range M7 -- T8. A statistical analysis was performed on the combined data from the present survey and previous radio observations of ultrac ool dwarfs. Whilst no radio emission was detected from any of the targets, significant upper limits were placed on the radio luminosities that are below the luminosities of previously detected ultracool dwarfs. Combining our results with those from the literature gives a detection rate for dwarfs in the spectral range M7 -- L3.5 of ~ 9%. In comparison, only one dwarf later than L3.5 is detected in 53 observations. We report the observed detection rate as a function of spectral type, and the number distribution of the dwarfs as a function of spectral type and rotation velocity. The radio observations to date point to a drop in the detection rate toward the ultracool dwarfs. However, the emission levels of detected ultracool dwarfs are comparable to those of earlier type active M dwarfs, which may imply that a mildly relativistic electron beam or a strong magnetic field can exist in ultracool dwarfs. Fast rotation may be a sufficient condition to produce magnetic fields strengths of several hundreds Gauss to several kilo Gauss, as suggested by the data for the active ultracool dwarfs with known rotation rates. A possible reason for the non-detection of radio emission from some dwarfs is that maybe the centrifugal acceleration mechanism in these dwarfs is weak (due to a low rotation rate) and thus cannot provide the necessary density and/or energy of accelerated electrons. An alternative explanation could be long-term variability, as is the case for several ultracool dwarfs whose radio emission varies considerably over long periods with emission levels dropping below the detection limit in some instances.
With the purpose to investigate the radio emission of new ultracool objects, we carried out a targeted search in the recently discovered system VHS J125601.92$-$125723.9 (hereafter VHS 1256$-$1257); this system is composed by an equal-mass M7.5 binar y and a L7 low-mass substellar object located at only 15.8,pc. We observed in phase-reference mode the system VHS 1256$-$1257 with the Karl G. Jansky Very Large Array at $X$- and $L$- band and with the European VLBI Network at $L$-band in several epochs during 2015 and 2016. We discovered radio emission at $X$-band spatially coincident with the equal-mass M7.5 binary with a flux density of 60 $mu$Jy. We determined a spectral index $alpha = -1.1 pm 0.3$ between 8 and 12 GHz, suggesting that non-thermal, optically-thin, synchrotron or gyrosynchrotron radiation is responsible for the observed radio emission. Interestingly, no signal is seen at $L$-band where we set a 3-$sigma$ upper limit of 20 $mu$Jy. This might be explained by strong variability of the binary or self-absorption at this frequency. By adopting the latter scenario and gyrosynchrotron radiation, we constrain the turnover frequency to be in the interval 5--8.5 GHz, from which we infer the presence of kG-intense magnetic fields in the M7.5 binary. Our data impose a 3-$sigma$ upper bound to the radio flux density of the L7 object of 9 $mu$Jy at 10,GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا