ترغب بنشر مسار تعليمي؟ اضغط هنا

Parity breaking signatures from a Chern-Simons coupling during inflation: the case of non-Gaussian gravitational waves

189   0   0.0 ( 0 )
 نشر من قبل Giorgio Orlando
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Considering high-energy modifications of Einstein gravity during inflation is an interesting issue. We can constrain the strength of the new gravitational terms through observations of inflationary imprints in the actual universe. In this paper we analyze the effects on slow-roll models due to a Chern-Simons term coupled to the inflaton field through a generic coupling function $f(phi)$. A well known result is the polarization of primordial gravitational waves (PGW) into left and right eigenstates, as a consequence of parity breaking. In such a scenario the modifications to the power spectrum of PGW are suppressed under the conditions that allow to avoid the production of ghost gravitons at a certain energy scale, the so-called Chern-Simons mass $M_{CS}$. In general it has been recently pointed out that there is very little hope to efficiently constrain chirality of PGW on the basis solely of two-point statistics from future CMB data, even in the most optimistic cases. Thus we search if significant parity breaking signatures can arise at least in the bispectrum statistics. We find that the tensor-tensor-scalar bispectra $langle gamma gamma zeta rangle$ for each polarization state are the only ones that are not suppressed. Their amplitude, setting the level of parity breaking during inflation, is proportional to the second derivative of the coupling function $f(phi)$ and they turn out to be maximum in the squeezed limit. We comment on the squeezed-limit consistency relation arising in the case of chiral gravitational waves, and on possible observables to constrain these signatures.



قيم البحث

اقرأ أيضاً

We present analytic results for the gravitational wave power spectrum induced in models where the inflaton is coupled to a fermionic pseudocurrent. We show that although such a coupling creates helically polarized fermions, the polarized component of the resulting gravitational waves is parametrically suppressed with respect to the non-polarized one. We also show that the amplitude of the gravitational wave signal associated to this production cannot exceed that generated by the standard mechanism of amplification of vacuum fluctuations. We previously found that this model allows for a regime in which the backreaction of the produced fermions allows for slow-roll inflation even for a steep inflaton potential, and still leads to Gaussian primordial scalar perturbations. The present analysis shows that this regime also results in a gravitational wave signal compatible with the current bounds.
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus repr esenting an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power-spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio $r$ and tensor spectral index $n_{rm T}$. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in the CMB, but if primordial fluctuations carry an isocurvature component, this need no longer be true. It is shown that in non-minimal inflationary and reheating settings, primordial isocurvature can survive in GWB and exhibit significant non-Gaussianity (NG) in contrast to the CMB, while obeying current observational bounds. While probing such NG GWB is at best a marginal possibility at LISA, there is much greater scope at future proposed detectors such as DECIGO and BBO. It is even possible that the first observations of inflation-era NG could be made with gravitational wave detectors as opposed to the CMB or Large-Scale Structure surveys.
121 - Zihan Zhou , Jie Jiang , Yi-Fu Cai 2020
We present a new realization of the resonant production of primordial black holes as well as gravitational waves in a two-stage inflation model consisting of a scalar field phi with an axion-monodromy-like periodic structure in the potential that gov erns the first stage and another field chi with a hilltop-like potential that dominates the second stage. The parametric resonance seeded by the periodic structure at the first stage amplifies the perturbations of both fields inside the Hubble radius. While the evolution of the background trajectory experiences a turn as the oscillatory barrier height increases, the amplified perturbations of chi remain as they are and contribute to the final curvature perturbation. It turns out that the primordial power spectrum displays a significant resonant peak on small scales, which can lead to an abundant production of primordial black holes. Furthermore, gravitational waves are also generated from the resonantly enhanced field perturbations during inflation, the amplitude of which may be constrained by future gravitational wave interferometers.
Here, we provide a simple Hubbard-like model of spin-$1/2$ fermions that gives rise to the SU(2) symmetric Thirring model that is equivalent, in the low-energy limit, to Yang-Mills-Chern-Simons model. First, we identify the regime that simulates the SU(2) Yang-Mills theory. Then, we suitably extend this model so that it gives rise to the SU(2) level $k$ Chern-Simons theory with $kgeq2$ that can support non-Abelian anyons. This is achieved by introducing multiple fermionic species and modifying the Thirring interactions, while preserving the SU(2) symmetry. Our proposal provides the means to theoretically and experimentally probe non-Abelian SU(2) level $k$ topological phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا