ﻻ يوجد ملخص باللغة العربية
Under stable atmospheric conditions, the zenithal brightness of the urban sky varies throughout the night following the time course of the anthropogenic emissions of light. Different types of artificial light sources (e.g. streetlights, residential, and vehicle lights) present specific time signatures, and this feature makes it possible to estimate the amount of sky brightness contributed by each one of them. Our approach is based on transforming the time representation of the zenithal sky brightness into a modal coefficients one, in terms of the time course signatures of the sources. The modal coefficients, and hence the absolute and relative contributions of each type of source, can be estimated from the measured brightness by means of linear least squares fits. A method for determining the time signatures is described, based on wide-field time-lapse photometry of the urban nightscape. Our preliminary results suggest that artificial light leaking out of the windows of residential buildings may account for a significant share of the time-varying part of the zenithal sky brightness, whilst the contribution of the vehicle lights seems to be significantly smaller.
This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three com
The photometric sky quality of Mt. Shatdzhatmaz, the site of Sternberg Astronomical Institute Caucasian Observatory 2.5 m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a
In 2018, Solar Cycle 24 entered into a solar minimum phase. During this period, 11 million zenithal night sky brightness (NSB) data were collected at different dark sites around the planet, including astronomical observatories and natural protected a
We present optical UBVRI zenith night sky brightness measurements collected on eighteen nights during 2013--2016 and SQM measurements obtained daily over twenty months during 2014--2016 at the Observatorio Astronomico Nacional on the Sierra San Pedro