ﻻ يوجد ملخص باللغة العربية
The ability to accurately perceive whether a speaker is asking a question or is making a statement is crucial for any successful interaction. However, learning and classifying tonal patterns has been a challenging task for automatic speech recognition and for models of tonal representation, as tonal contours are characterized by significant variation. This paper provides a classification model of Cypriot Greek questions and statements. We evaluate two state-of-the-art network architectures: a Long Short-Term Memory (LSTM) network and a convolutional network (ConvNet). The ConvNet outperforms the LSTM in the classification task and exhibited an excellent performance with 95% classification accuracy.
Calculations of nuclei are often carried out in finite model spaces. Thus, finite-size corrections enter, and it is necessary to extrapolate the computed observables to infinite model spaces. In this work, we employ extrapolation methods based on art
During the last couple of years, Recurrent Neural Networks (RNN) have reached state-of-the-art performances on most of the sequence modelling problems. In particular, the sequence to sequence model and the neural CRF have proved to be very effective
What makes an artificial neural network easier to train and more likely to produce desirable solutions than other comparable networks? In this paper, we provide a new angle to study such issues under the setting of a fixed number of model parameters
The identification of expanding HI shells is difficult because of their variable morphological characteristics. The detection of HI bubbles on a global scale therefore never has been attempted. In this paper, an automatic detector for expanding HI sh
Morphological declension, which aims to inflect nouns to indicate number, case and gender, is an important task in natural language processing (NLP). This research proposal seeks to address the degree to which Recurrent Neural Networks (RNNs) are eff