ﻻ يوجد ملخص باللغة العربية
Continuing the project described by Kato et al. (2009, arXiv:0905.1757), we collected times of superhump maxima for 127 SU UMa-type dwarf novae observed mainly during the 2016--2017 season and characterized these objects. We provide updated statistics of relation between the orbital period and the variation of superhumps, the relation between period variations and the rebrightening type in WZ Sge-type objects. We obtained the period minimum of 0.05290(2)d and confirmed the presence of the period gap above the orbital period ~0.09d. We note that four objects (NY Her, 1RXS J161659.5+620014, CRTS J033349.8-282244 and SDSS J153015.04+094946.3) have supercycles shorter than 100d but show infrequent normal outbursts. We consider that these objects are similar to V503 Cyg, whose normal outbursts are likely suppressed by a disk tilt. These four objects are excellent candidates to search for negative superhumps. DDE 48 appears to be a member of ER UMa-type dwarf novae. We identified a new eclipsing SU UMa-type object MASTER OT J220559.40-341434.9. We observed 21 WZ Sge-type dwarf novae during this interval and reported 18 out of them in this paper. Among them, ASASSN-16js is a good candidate for a period bouncer. ASASSN-16ia showed a precursor outburst for the first time in a WZ Sge-type superoutburst. ASASSN-16kg, CRTS J000130.5+050624 and SDSS J113551.09+532246.2 are located in the period gap. We have newly obtained 15 orbital periods, including periods from early superhumps.
Continuing the project described by Kato et al. (2009, PASJ, 61, S395, arXiv/0905.1757), we collected times of superhump maxima for 102 SU UMa-type dwarf novae observed mainly during the 2017 season and characterized these objects. WZ Sge-type stars
Continuing the project described by Kato et al. (2009, arXiv:0905.1757), we collected times of superhump maxima for 128 SU UMa-type dwarf novae observed mainly during the 2015-2016 season and characterized these objects. The data have improved the di
We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of superhump period are found to be composed of three distinct stages: early evol
As an extension of the project in Kato et al. (2009, arXiv:0905.1757), we collected times of superhump maxima for 61 SU UMa-type dwarf novae mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in
Continuing the project described by Kato et al. (2009, arXiv:0905.1757), we studied 86 SU UMa-type dwarf novae. We confirmed the general trends such as the relation between period derivatives and orbital periods. There are some systems showing positi