ترغب بنشر مسار تعليمي؟ اضغط هنا

Lepton acceleration in the vicinity of the event horizon: Very-high-energy emissions from super-massive black holes

152   0   0.0 ( 0 )
 نشر من قبل Kouichi Hirotani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Around a rapidly rotating black hole (BH), when the plasma accretion rate is much less than the Eddington rate, the radiatively inefficient accretion flow (RIAF) cannot supply enough MeV photons that are capable of materializing as pairs. In such a charge-starved BH magnetosphere, the force-free condition breaks down in the polar funnels. Applying the pulsar outer-magnetospheric lepton accelerator theory to super-massive BHs, we demonstrate that a strong electric field arises along the magnetic field lines in the direct vicinity of the event horizon in the funnels, that the electrons and positrons are accelerated up to 100~TeV in this vacuum gap, and that these leptons emit copious photons via inverse-Compton (IC) process between 0.1~TeV and 30~TeV for a distant observer. It is found that these IC fluxes will be detectable with Imaging Atmospheric Cherenkov Telescopes, provided that a low-luminosity active galactic nucleus is located within 1~Mpc for a million-solar-mass central BH or within 30~Mpc for a billion-solar-mass central BH. These very-high-energy fluxes are beamed in a relatively small solid angle around the rotation axis because of the inhomogeneous and anisotropic distribution of the RIAF photon field, and show an anti-correlation with the RIAF submillimeter fluxes. The gap luminosity little depends on the three-dimensional magnetic-field configuration, because the Goldreich-Julian charge density, and hence the exerted electric field is essentially governed by the frame-dragging effect, not by the magnetic field configuration.



قيم البحث

اقرأ أيضاً

We investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, applying the pulsar outer-gap model to black hole magnetospheres. During a low accretion phase, the radiatively inefficient accretion flow (RIAF) cannot emit enough MeV photons that are needed to sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma-rays via curvature and inverse-Compton (IC) processes. Some of such gamma-rays collide with the submillimeter-IR photons emitted from the RIAF to materialize as pairs, which polarize to partially screen the original acceleration electric field. It is found that the gap gamma-ray luminosity increases with decreasing accretion rate. However, if the accretion rate decreases too much, the diminished RIAF soft photon field can no longer sustain a stationary pair production within the gap. As long as a stationary gap is formed, the magnetosphere becomes force-free outside the gap by the cascaded pairs, irrespective of the BH mass. If a nearby stellar-mass black hole (BH) is in quiescence, or if a galactic intermediate-mass BH is in a very low accretion state, its curvature and IC emissions are found to be detectable with Fermi/LAT and imaging atmospheric Cherenkov telescopes (IACT). If a low-luminosity active galactic nucleus is located within a few tens of Mpc, the IC emission from its super-massive BH is marginally detectable with IACT.
219 - Kouichi Hirotani 2018
When a black hole accretes plasmas at very low accretion rate, an advection-dominated accretion flow (ADAF) is formed. In an ADAF, relativistic electrons emit soft gamma-rays via Bremsstrahlung. Some MeV photons collide with each other to materialize as electron-positron pairs in the magnetosphere. Such pairs efficiently screen the electric field along the magnetic field lines, when the accretion rate is typically greater than 0.03-0.3% of the Eddington rate. However, when the accretion rate becomes smaller than this value, the number density of the created pairs becomes less than the rotationally induced Goldreich-Julian density. In such a charge-starved magnetosphere, an electric field arises along the magnetic field lines to accelerate charged leptons into ultra-relativistic energies, leading to an efficient TeV emission via an inverse-Compton (C) process, spending a portion of the extracted holes rotational energy. In this review, we summarize the stationary lepton accelerator models in black hole magnetospheres. We apply the model to super-massive black holes and demonstrate that nearby low-luminosity active galactic nuclei are capable of emitting detectable gamma-rays between 0.1 and 30 TeV with the Cherenkov Telescope Array.
125 - Pavel Kroupa 2020
The observation of quasars at very high redshift such as Poniuaena is a challenge for models of super-massive black hole (SMBH) formation. This work presents a study of SMBH formation via known physical processes in star-burst clusters formed at the onset of the formation of their hosting galaxy. While at the early stages hyper-massive star-burst clusters reach the luminosities of quasars, once their massive stars die, the ensuing gas accretion from the still forming host galaxy compresses its stellar black hole (BH) component to a compact state overcoming heating from the BH--BH binaries such that the cluster collapses, forming a massive SMBH-seed within about a hundred Myr. Within this scenario the SMBH--spheroid correlation emerges near-to-exactly. The highest-redshift quasars may thus be hyper-massive star-burst clusters or young ultra-compact dwarf galaxies (UCDs), being the precursors of the SMBHs that form therein within about 200 Myr of the first stars. For spheroid masses <10^9.6 Msun a SMBH cannot form and instead only the accumulated nuclear cluster remains. The number evolution of the quasar phases with redshift is calculated and the possible problem of missing quasars at very high redshift is raised. SMBH-bearing UCDs and the formation of spheroids are discussed critically in view of the high redshift observations. A possible tension is found between the high star-formation rates (SFRs) implied by downsizing and the observed SFRs, which may be alleviated within the IGIMF theory and if the downsizing times are somewhat longer.
We search for the gamma-ray counterparts of stellar-mass black holes using long-term Fermi archive to investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, by applying the pulsar outer-gap model t o their magnetosphere. When a black hole transient (BHT) is in a low-hard or quiescent state, the radiatively inefficient accretion flow cannot emit enough MeV photons that are required to sustain the force-free magnetosphere in the polar funnel via two-photon collisions. In this charge-starved gap region, an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma-rays via the curvature and inverse-Compton (IC) processes. It is found that these gamma-ray emissions exhibit a flaring activity when the plasma accretion rate stays typically between 0.01 and 0.005 percent of the Eddington value for rapidly rotating, stellar-mass black holes. By analyzing the detection limit determined from archival Fermi/LAT data, we find that the 7-year averaged duty cycle of such flaring activities should be less than 5% and 10% for XTE J1118+480 and 1A 0620-00, respectively, and that the detection limit is comparable to the theoretical prediction for V404 Cyg. It is predicted that the gap emission can be discriminated from the jet emission, if we investigate the high-energy spectral behaviour or observe nearby BHTs during deep quiescence simultaneously in infrared wavelength and very-high energies.
We investigate the electron-positron pair cascade taking place in the magnetosphere of a rapidly rotating black hole. Because of the spacetime frame dragging, the Goldreich-Julian charge density changes sign in the vicinity of the event horizon, whic h leads to an occurrence of a magnetic-field aligned electric field, in the same way as the pulsar outer-magnetospheric accelerator. In this lepton accelerator, electrons and positrons are accelerated in the opposite directions, to emit copious gamma-rays via the curvature and inverse-Compton processes. We examine a stationary pair cascade, and show that a stellar-mass black hole moving in a gaseous cloud can emit a detectable very-high-energy flux, provided that the black hole is extremely rotating and that the distance is less than about 1 kpc. We argue that the gamma-ray image will have a point-like morphology, and demonstrate that their gamma-ray spectra have a broad peak around 0.01-1 GeV and a sharp peak around 0.1 TeV, that the accelerators become most luminous when the mass accretion rate becomes about 0.01% of the Eddington rate, and that the predicted gamma-ray flux little changes in a wide range of magnetospheric currents. An implication of the stability of such a stationary gap is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا