Stellar equilibrium configurations of white dwarfs in the $f(R,T)$ gravity


الملخص بالإنكليزية

In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, na-mely, $f(R,T)$ gravity, for which $R$ and $T$ stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form $f(R,T)=R+2lambda T$, with $lambda$ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter $lambda$ are derived. More massive and larger white dwarfs are found for negative values of $lambda$ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of $f(R,T)$ theory for massive white dwarfs is the increase of the radius in comparison with GR and also $f(R)$ results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for $lambda$, namely, $lambda >- 3times 10^{-4}$.

تحميل البحث