ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium restoration of duality symmetry in the vicinity of the superconductor-insulator transition

94   0   0.0 ( 0 )
 نشر من قبل Idan Tamir
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic field driven superconductor to insulator transition in thin films was theoretically analyzed via a vortex-charge duality transformation applied to the Hamiltonian. Vortices condensation was conjectured as the underline physical mechanism of the insulating phase. Experimental evidence supported duality symmetry across the magnetic-field driven superconductor to insulator transition in amorphous Indium Oxide films. Counterintuitively, duality symmetry is broken at low temperatures where the insulating phase develops strongly non linear current-voltage characteristics. Here, we follow the breakdown of duality symmetry down to very low temperatures and demonstrate the restoration of duality symmetry out of equilibrium.



قيم البحث

اقرأ أيضاً

We present results of measurements obtained from a mesoscopic ring of a highly disordered superconductor. Superimposed on a smooth magnetoresistance background we find periodic oscillations with a period that is independent of the strength of the mag netic field. The period of the oscillations is consistent with charge transport by Cooper pairs. The oscillations persist unabated for more than 90 periods, through the transition to the insulating phase, up to our highest field of 12 T.
The superconductor-insulator transition of ultrathin films of bismuth, grown on liquid helium cooled substrates, has been studied. The transition was tuned by changing both film thickness and perpendicular magnetic field. Assuming that the transition is controlled by a T=0 critical point, a finite size scaling analysis was carried out to determine the correlation length exponent v and the dynamical critical exponent z. The phase diagram and the critical resistance have been studied as a function of film thickness and magnetic field. The results are discussed in terms of bosonic models of the superconductor-insulator transition, as well as the percolation models which predict finite dissipation at T=0.
We provide a microscopic-level derivation of earlier results showing that, in the critical vicinity of the superconductor-to-insulator transition (SIT), disorder and localization become negligible and the structure of the emergent phases is determine d by topological effects arising from the competition between two quantum orders, superconductivity and superinsulation. We find that, around the critical point, the ground state is a composite incompressible quantum fluid of Cooper pairs and vortices coexisting with an intertwined Wigner crystal for the excess (with respect to integer filling) excitations of the two types.
It is well known that the metal-insulator transition in two dimensions for non-interacting fermions takes place at infinitesimal disorder. In contrast, the superconductor-to-insulator transition takes place at a finite critical disorder (on the order of V_c ~ 2t), where V is the typical width of the distribution of random site energies and t is the hopping scale. In this article we compare the localization/delocalization properties of one and two particles. Whereas the metal-insulator transition is a consequence of single-particle Anderson localization, the superconductor-insulator transition (SIT) is due to pair localization - or, alternatively, fluctuations of the phase conjugate to pair density. The central question we address is how superconductivity emerges from localized single-particle states. We address this question using inhomogeneous mean field theory and quantum Monte Carlo techniques and make several testable predictions for local spectroscopic probes across the SIT. We show that with increasing disorder, the system forms superconducting blobs on the scale of the coherence length embedded in an insulating matrix. In the superconducting state, the phases on the different blobs are coherent across the system whereas in the insulator long-range phase coherence is disrupted by quantum fluctuations. As a consequence of this emergent granularity, we show that the single-particle energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT despite a robust single-particle gap.
115 - I. L. Landau , H. R. Ott 2004
We present the results of a scaling analysis of isothermal magnetization M(H) curves measured in the mixed state of high-Tc superconductors in the vicinity of the established first order phase transition. The most surprising result of our analysis is that the difference between the magnetization above and below the transition may have either sign, depending on the particular chosen sample. We argue that this observation, based on M(H) data available in the literature, is inconsistent with the interpretation that the well known first order phase transition in the mixed state of high-Tc superconductors always represents the melting transition in the vortex system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا