ﻻ يوجد ملخص باللغة العربية
Lattice QCD calculations of transverse momentum-dependent parton distribution functions (TMDs) in nucleons are presented, based on the evaluation of nucleon matrix elements of quark bilocal operators with a staple-shaped gauge connection. Both time-reversal odd effects, namely, the generalized Sivers and Boer-Mulders transverse momentum shifts, as well as time-reversal even effects, namely, the generalized transversity and one of the generalized worm-gear shifts are studied. Results are obtained on two different $n_f = 2+1$ flavor ensembles with approximately matching pion masses but very different discretization schemes: domain-wall fermions (DWF) with lattice spacing $a=0.084$ fm and pion mass 297 MeV, and Wilson-clover fermions with $a=0.114$ fm and pion mass 317 MeV. Comparison of the results on the two ensembles yields insight into the length scales at which lattice discretization errors are small, and into the extent to which the renormalization pattern obeyed by the continuum QCD TMD operator continues to apply in the lattice formulation. For the studied TMD observables, the results are found to be consistent between the two ensembles at sufficiently large separation of the quark fields within the operator, whereas deviations are observed in the local limit and in the case of a straight link gauge connection, which is relevant to the studies of parton distribution functions. Furthermore, the lattice estimates of the generalized Sivers shift obtained here are confronted with, and are seen to tend towards, a phenomenological estimate extracted from experimental data.
This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly
This work applies lattice QCD to compute quark momentum distributions in the nucleon. We explore a novel approach based on non-local operators in order to analyze transverse momentum dependent parton distribution functions, which encode information a
Transverse momentum dependent parton distribution functions (TMDPDFs) encode information about the intrinsic motion of quarks inside the nucleon. They are important non-perturbative ingredients in our understanding of, e.g., azimuthal asymmetries and
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independen
We investigate the relations between transverse momentum dependent parton distributions (TMDs) and generalized parton distributions (GPDs) in a light-front quark-diquark model motivated by soft wall AdS/QCD. Many relations are found to have similar s