ﻻ يوجد ملخص باللغة العربية
We develop a framework for deriving Dyson-Schwinger Equations (DSEs) and Bethe-Salpeter Equation (BSE) in QCD at large $N_c$ limit. The starting point is a modified form (with auxiliary fields) of QCD generating functional. This framework provides a natural order-by-order truncation scheme for DSEs and BSE, and the kernels of the equations up to any order are explicitly given. Chiral symmetry (at chiral limit) is preserved in any order truncation, so it exemplifies the symmetry preserving truncation scheme. It provides a method to study DSEs and BSE beyond the Rainbow-Ladder truncation, and is especially useful to study contributions from non-Abelian dynamics (those arise from gluon self-interactions). We also derive the equation for the quark-ghost scattering kernel, and discuss the Slavnov-Taylor identity connecting the quark-gluon vertex, the quark propagator and the quark-ghost scattering kernel.
In relativistic frameworks, given by the Bethe-Salpeter and light-front bound state equations, the binding energies of system of three scalar particles interacting by scalar exchange particles are calculated. In contrast to two-body systems, the thre
The transition form factor for electrodisintegration of a two-body bound system is calculated in the Bethe-Salpeter framework. For the initial (bound) and the final (scattering) states, we use our solutions of the Bethe-Salpeter equation in Minkowski
Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches d
We present a new method for solving the two-body Bethe-Salpeter equation in Minkowski space. It is based on the Nakanishi integral representation of the Bethe-Salpeter amplitude and on subsequent projection of the equation on the light-front plane. T
We reexamine the relations between the Bethe-Salpeter (BS) wave function of two particles, the on-shell scattering amplitude, and the effective potential in quantum filed theory. It is emphasized that there is an exact relation between the BS wave fu